Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

Increasing atmospheric nitrogen deposition and climate change are considered the main factors accelerating the long-term growth of forests. Quantification of changes in growth rate can be extremely useful in monitoring and assessing the impact of climate change on site productivity. In this study, we carried out a country-wide analysis of long-term (100 years) dynamics and changes in the height growth rate and site index (SI) of Scots pine in Poland. To ensure representativeness we used a large sample of stem analysis trees collected on 312 plots selected using stratified sampling. To control the effect of site fertility and thus avoid the over-representation of older stands on infertile sites, we measured a range of soil properties that, together with environmental indicators characterising climatic conditions and topography, were used in growth trend modelling as explanatory variables. We found that trees planted in successive years have grown faster. The SI calculated for individual trees is linearly dependent on the year of germination and with increasing age of germination, the SI at the base age of 100 years has increased by 8.4 cm per year. Despite the differences in the growth dynamics of pines planted in different germination years, tree growth follows the same growth pattern. The observed continuous changes in site productivity correspond to an increase in the SI by over 29% between 1900 and 2000. A consequence of continuous changes in site conditions and height growth rate is ambiguity in derived SI values. Under changing site conditions, SI values calculated based on stand height and age depend not only on site productivity but also the year of germination. As a consequence, stands growing under identical site conditions show different SIs, which should be acknowledged if the SI is to be used in forest management. Therefore, determining the SI of newly established stands based on the SI of older generations requires the application of an amendment to account for stand age. Continuously improving our understanding of potential climate change impacts on forest ecosystems is essential and provide information to support forest managers seeking to develop effective adaptation measures and determine sustainable forestry production. As such, our results provide valuable support when making long-term decisions and developing effective adaptation strategies in forest management.

Sammendrag

Det er fokus i landbruket på å øke andelen av norskprodusert protein. Helgrøde av korn er i hovedsak et fiber- og stivelsesrikt fôr. Åkerbønne er en proteinrik belgvekst som krever lang veksttid. Målet med dette prosjektet var å undersøke helgrøde med åkerbønner under vekstforholdene i Rogaland med hensyn til veksttid, avlingspotensial og fôrkvalitet med fokus på proteininnhold. Det ble anlagt to feltforsøk i 2019 og 2020 på Særheim, Klepp. For å sammenligne to ulike dyrkingsmetoder ble åkerbønner sådd i reinbestand og i blanding med hvete og raigras. Ulike sorter av åkerbønner ble tatt med for å undersøke variasjon i avling, samtidig som fôrkvalitet ble undersøkt nærmere for tre sorter. Helgrøden ble slått når hveten var deigmoden. Åkerbønne viste seg å være aktuell som helgrødevekst da den ga høye proteinavlinger uten tilførsel av nitrogengjødsel. Såing av åkerbønner i blanding med hvete og raigras ga høyere avling enn åkerbønner i reinbestand. Det var få signifikante avlingsforskjeller mellom sorter. Likevel tydet forsøkene på at seine sorter egnet seg bedre i blanding med hvete enn tidligere sorter. Proteininnholdet var signifikant høyest i reinbestand.

Til dokument

Sammendrag

A major challenge in predicting species’ distributional responses to climate change involves resolving interactions between abiotic and biotic factors in structuring ecological communities. This challenge reflects the classical conceptualization of species’ regional distributions as simultaneously constrained by climatic conditions, while by necessity emerging from local biotic interactions. A ubiquitous pattern in nature illustrates this dichotomy: potentially competing species covary positively at large scales but negatively at local scales. Recent theory poses a resolution to this conundrum by predicting roles of both abiotic and biotic factors in covariation of species at both scales, but empirical tests have lagged such developments. We conducted a 15-y warming and herbivore-exclusion experiment to investigate drivers of opposing patterns of covariation between two codominant arctic shrub species at large and local scales. Climatic conditions and biotic exploitation mediated both positive covariation between these species at the landscape scale and negative covariation between them locally. Furthermore, covariation between the two species conferred resilience in ecosystem carbon uptake. This study thus lends empirical support to developing theoretical solutions to a long-standing ecological puzzle, while highlighting its relevance to understanding community compositional responses to climate change.

Til dokument

Sammendrag

Wheat (Triticum aestivum L.) yields are commonly affected by foliar infection by fungal pathogens. Of these, three wheat leaf blotch fungal diseases, septoria nodorum blotch (SNB), tan spot (TS) and septoria tritici blotch (STB), caused by Parastagonospora nodorum (Pn), Pyrenophora tritici-repentis (Ptr) and Zymoseptoria tritici (Zt), respectively, induce major yield losses. Infection results in necrotic areas on the leaf, and it is often difficult to determine the underlying causative pathogen from visible symptoms alone, especially in mixed infections. Here, a regional survey of 330 wheat samples collected across three seasons (years 2015–2017) from four north-west European countries was undertaken. Using quantitative polymerase chain reaction (qPCR) assays specific for each pathogen, as well as disease assessment of leaf materials, distinct regional differences were identified. Two-thirds (65%) of all samples harbored at least two of the three pathogens. Norway had high SNB abundance, but also showed mixed infections of SNB, TS and STB. In Germany, TS was prevalent, with STB also common. Danish samples commonly possessed all three pathogens, with STB prevalent, followed by TS and SNB. The UK had a major prevalence of STB with minimal occurrence of TS and SNB. Across all samples, qPCR identified Zt, Pn and Ptr in 90%, 54% and 57% of samples, respectively. For each pathogen, average disease levels via visual assessment showed modest positive correlation with fungal DNA concentrations (R2 = 0.13–0.32). Overall, our study highlights that the occurrence of mixed infection is common and widespread, with important implications for wheat disease management and breeding strategies.

Til dokument

Sammendrag

Predicting N mineralization from green manure in different soil types during the cold season is instrumental for improving crop management with higher N use efficiency and reduced risks of N losses in a cool and humid climate. The objective of our work was to study the effects of low temperatures and soil type on the net nitrogen (N) mineralization and the relationship between N and carbon (C) mineralization from N-rich plant material. A silty clay loam and a sandy loam were incubated with or without clover leaves for 80 days at 0, 4, 8.5 or 15 ◦C. The results showed a substantial mineralization of N in clover leaves (7% of N added), unaffected by temperature, already on 3rd day. This was followed by net N immobilization for about 4 weeks in the clay soil, with similar tendencies in the sandy soil, and more severely at the higher than the lower temperatures. After 80 days of incubation, net N mineralization was only 13–22% of total N in clover leaves. The ratio of net mineralized N to C was higher at lower temperatures, and higher in the sandy than in the clay soil. After the immobilization period, the N mineralization increased, positively related to temperature, and the ratio of net mineralized N to C became constant. In conclusion, low temperature during the initial phase of mineralization altered the ratio between net N and C mineralization from easily decomposable plant material, and the net N mineralization occurred more rapidly in the sandy soil. The change in stoichiometry at low temperatures, as well as the modifying effect of soil type, should be considered when predicting N mineralization of N-rich plant material.

Til dokument

Sammendrag

Diplodia sapinea is a cosmopolitan endophyte and opportunistic pathogen having occurred on several conifer species in Europe for at least 200 years. In Europe, disease outbreaks have increased on several Pinus spp. in the last few decades. In this study, the genetic structure of the European and western Asian D. sapinea population were investigated using 13 microsatellite markers. In total, 425 isolates from 15 countries were analysed. A high clonal fraction and low genetic distance between most subpopulations was found. One single haplotype dominates the European population, being represented by 45.3% of all isolates and found in nearly all investigated countries. Three genetically distinct subpopulations were found: Central/North European, Italian and Georgian. The recently detected subpopulations of D. sapinea in northern Europe (Estonia) share several haplotypes with the German subpopulation. The northern European subpopulations (Latvia, Estonia and Finland) show relatively high genetic diversity compared to those in central Europe suggesting either that the fungus has existed in the North in an asymptomatic/endophytic mode for a long time or that it has spread recently by multiple introductions. Considerable genetic diversity was found even among isolates of a single tree as 16 isolates from a single tree resulted in lower clonal fraction index than most subpopulations in Europe, which might reflect cryptic sexual proliferation. According to currently published allelic patterns, D. sapinea most likely originates from North America or from some unsampled population in Asia or central America. In order to enable the detection of endophytic or latent infections of planting stock by D. sapinea, new species-specific PCR primers (DiSapi-F and Diplo-R) were designed. During the search for Diplodia isolates across the world for species specific primer development, we identified D. africana in California, USA, and in the Canary Islands, which are the first records of this species in North America and in Spain.