Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2003

Sammendrag

We fogged trees in two pine dominated forests in Norway with a synthetic pyrethroid in order to compare the canopy-dwelling fauna of arthropods between costal (Kvam) and boreal (Sigdal) sites and between old (250-330 years) and mature (60-120 years) trees at Sigdal. Almost 30,000 specimens were assigned to 510 species; only 93 species were present at both sites. Species diversity, as established by rarefaction, was similar in old and mature trees. However, the number of species new to Norway (including nine species new to science) was significantly higher in the old trees. We suggest that the scarcity of old trees, habitat heterogeneity and structural differences between old and mature trees may explain these patterns. Productivity and topographic position at the site of growth explained the between-tree variation in species occurrence for the more abundant species, which were mainly Collembola and Oribatida. Species diversity was similar at the boreal and coastal sites, but there were clear differences in species composition

Til dokument

Sammendrag

Models for predicting mortality in even-aged stands were developed. The models rely on data from the Norwegian National Forest Inventory, and were designed for use in large-scale forestry scenario models. A two-step modelling strategy was applied: i) logistic regression models predicting the probability of complete survival to occur, and ii) multiplicative regression models for stem number reduction and diameter calibration. A joint model for all species predicting the probability of survival to occur on a plot was developed. Separate models for spruce, pine and broadleaved-dominated forests were developed for stem number reduction, while no appropriate models for diameter calibration were found. The phenomenon mortality is a stochastic, rare and irregular event, and this was reflected as low R2 in the models. However, the model performance appeared logical and the results of validations based on independent data were reasonably good, i.e. the presented models may be applied for large-scale forestry scenario analyses. With new rotations of permanent sample plot measurements, the models should be evaluated and, if necessary, revised.

Sammendrag

Norwegian agriculture depends heavily on governmental subsidies, due to small farming units and high costs. Due to a limited home market, many agricultural productions are also quantum regulated. Milk and grain production was regulated starting in the 1950 using region specific prices. At the level of three counties in south-eastern Norway, this policy resulted in an increase in the grain producing area from 30 to 80% of total agricultural area causing a similar reduction in grassland area over a'30 year period. The change in land use caused by this policy more than doubled the estimated soil losses by water erosion. During the late; seventies extensive land levelling in the same region stimulated by subsidies lead to an estimated two-three fold increase in soil erosion. The increase was especially high when former ravine landscapes used for pasture were levelled and turned into arable land that was ploughed in autumn. Very visible erosion and increasing negative offsite effects on water quality together with overproduction put an end to the subsidies for land levelling. Erosion research was started around 1980 and the results from this research lead to the introduction of several kinds of payments in the early 1990 to encourage more sustainable agricultural production. Since the policy changed there has been changes in cultivating systems and a reduction in soil erosion has been estimated. Thus, farmers' behaviour and soil erosion in Norway is strongly influenced by agricultural and environmental policy.

Sammendrag

Previous studies point at biogeographic (i.e. evolutionary and demographic) and ecological (i.e. habitat differentiation and disturbance) processes as the most important causes of spatial variation in species richness and species composition. We examined patterns of variation in similarity of vascular plant and bryophyte species composition among 150 1-m2 plots distributed semi-randomly over 11 Norwegian boreal swamp-forest localities that were species-rich islands in an otherwise species-poor forest landscape. For each plot, 53 environmental variables were recorded. By using CCA analyses, we found that c. 20% of the explainable variation in species composition was due to swamp-forest affiliation, in addition to the c. 35% that was due to environmental differences between swamp-forest localities. The unique component of the species composition of each swamp forest was also emphasised by analyses of floristic dissimilarity: plots were significantly more floristically dissimilar if situated in different than if situated in the same swamp forest, even after environmental differences had been corrected for. The lack of any significant relationship between floristic dissimilarity and geographical distance or swamp-forest area indicated that this pattern was not mainly due to demographic processes. We argue that the floristic distinctness of swamp forests, in particular those richer in species and soil nutrients, is due to a combination of factors among which randomness in establishment in infrequently occurring gaps ( ‘windows of opportunity’) are likely to be important. The unique combination of important determinants of the species composition found for boreal swamp forests supports the view that there exists a diversity of explanations for diversity and that these, to a large extent, are system- and/or area-specific.