Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Adaptive divergence in response to environmental clines are expected to be common in species occupying heterogeneous environments. Despite numerous advances in techniques appropriate for non-model species, gene–environment association studies in elasmobranchs are still scarce. The bronze whaler or copper shark (Carcharhinus brachyurus) is a large coastal shark with a wide distribution and one of the most exploited elasmobranchs in southern Africa. Here, we assessed the distribution of neutral and adaptive genomic diversity in C. brachyurus across a highly heterogeneous environment in southern Africa based on genome-wide SNPs obtained through a restriction site-associated DNA method (3RAD). A combination of differentiation-based genome-scan (outflank) and genotype–environment analyses (redundancy analysis, latent factor mixed models) identified a total of 234 differentiation-based outlier and candidate SNPs associated with bioclimatic variables. Analysis of 26,299 putatively neutral SNPs revealed moderate and evenly distributed levels of genomic diversity across sites from the east coast of South Africa to Angola. Multivariate and clustering analyses demonstrated a high degree of gene flow with no significant population structuring among or within ocean basins. In contrast, the putatively adaptive SNPs demonstrated the presence of two clusters and deep divergence between Angola and all other individuals from Namibia and South Africa. These results provide evidence for adaptive divergence in response to a heterogeneous seascape in a large, mobile shark despite high levels of gene flow. These results are expected to inform management strategies and policy at the national and regional level for conservation of C. brachyurus populations.

Til dokument

Sammendrag

In this study, we leverage geographical coordinates and firm-level panel data to uncover variations in production across different locations. Our approach involves using a semiparametric proxy variable regression estimator, which allows us to define and estimate a customized production function for each firm and its corresponding location. By employing kernel methods, we estimate the nonparametric functions that determine the model’s parameters based on latitude and longitude. Furthermore, our model incorporates productivity components that consider various factors that influence production. Unlike spatially autoregressive-type production functions that assume a uniform technology across all locations, our approach estimates technology and productivity at both the firm and location levels, taking into account their specific characteristics. To handle endogenous regressors, we incorporate a proxy variable identification technique, distinguishing our method from geographically weighted semiparametric regressions. To investigate the heterogeneity in production technology and productivity among Norwegian grain farmers, we apply our model to a sample of farms using panel data spanning from 2001 to 2020. Through this analysis, we provide empirical evidence of regional variations in both technology and productivity among Norwegian grain farmers. Finally, we discuss the suitability of our approach for addressing the heterogeneity in this industry.

Sammendrag

Dyrkingen av lokale humle ved Lom bryggeri har vist seg både mulig og gjennomførbar. Humlen dyrkes dels i pallekarm i et større veksthus, Vaagaasar, i et mindre veksthus, Grjotheim og på den opprinnelige vokseplassen hvor humlen har vokst i flere generasjoner. I veksthuset på Vaagaasar dyrkes plantene i pallekarm. For å øke utbyttet kunne plantene med fordel få mer plass og dermed økt lystilgang. Ved å dyrke i pallekarm begrenses rotutviklingen noe og det er derfor begrenset hvor mange planter man kan ha per pallekarm. Humle har en stor rotmasse, og vil vokse nedover i laget under pallekarmen. Under pallekarmene er det sandjord, det kan være gunstig ved nyetablering å tilføre mer organisk jord for å gi bedre forhold for røttene i dypere jordlag. I det lille veksthuset på Grjotheim, vokser plantene i bakken, og det samme på den opprinnelige lokaliteten. Det kunne se ut som plantene trives bedre her. Om det skylles jordforhold, eller eventuelt om klimaet i veksthuset på Vaagaasar blir for varmt og fuktig, er usikkert. Det er for sesongen 2023 installert dryppvanning i veksthuset. Jevn vanntilgang er veldig viktig for humle og erfaringen så langt er også at dette har bidratt til bedre vekstvilkår for plantene. Det kan eventuelt installeres overvanning/dusjing av plantene som kan redusere angrep av meldugg.

Til dokument

Sammendrag

The Chernobyl Nuclear Power Plant (ChNPP) accident in 1986 resulted in extremely high levels of acute ionising radiation, that killed or damaged Scots pine (Pinus sylvestris) trees in the surrounding areas. Dead trees were cleared and buried, and new plantations established a few years later. Today, more than three decades later, gamma and beta-radiation near the ChNPP is still elevated compared with ambient levels but have decreased by a factor of 300 and 100, respectively. In the present work, Scots pine-trees growing at High (220 μGy h-1), Medium (11 μGy h-1), and Low (0.2 μGy h-1) total (internal + external) dose rates of chronically elevated ionising radiation in the Chernobyl Exclusion zone were investigated with respect to possible damage to DNA, cells and organelles, as well as potentially increased levels of phenolic and terpenoid antioxidants. Scots pine from the High and Medium radiation sites had elevated levels of DNA damage in shoot tips and needles as shown by the COMET assay, as well as increased numbers of resin ducts and subcellular abnormalities in needles. Needles from the High radiation site showed elevated levels of monoterpenes and condensed tannins compared with those from the other sites. In conclusion, more than three decades after the ChNPP accident substantial DNA damage and (sub)cellular effects, but also mobilisation of stress-protective substances possessing antioxidant activity were observed in Scots pine trees growing at elevated levels of ionising radiation. This demonstrates that the radiation levels in the Red Forest still significantly impact the plant community.

Til dokument

Sammendrag

The Chernobyl Nuclear Power Plant (ChNPP) accident in 1986 resulted in extremely high levels of acute ionising radiation, that killed or damaged Scots pine (Pinus sylvestris) trees in the surrounding areas. Dead trees were cleared and buried, and new plantations established a few years later. Today, more than three decades later, gamma and beta-radiation near the ChNPP is still elevated compared with ambient levels but have decreased by a factor of 300 and 100, respectively. In the present work, Scots pine-trees growing at High (220 μGy h−1), Medium (11 μGy h−1), and Low (0.2 μGy h−1) total (internal + external) dose rates of chronically elevated ionising radiation in the Chernobyl Exclusion zone were investigated with respect to possible damage to DNA, cells and organelles, as well as potentially increased levels of phenolic and terpenoid antioxidants. Scots pine from the High and Medium radiation sites had elevated levels of DNA damage in shoot tips and needles as shown by the COMET assay, as well as increased numbers of resin ducts and subcellular abnormalities in needles. Needles from the High radiation site showed elevated levels of monoterpenes and condensed tannins compared with those from the other sites. In conclusion, more than three decades after the ChNPP accident substantial DNA damage and (sub)cellular effects, but also mobilisation of stress-protective substances possessing antioxidant activity were observed in Scots pine trees growing at elevated levels of ionising radiation. This demonstrates that the radiation levels in the Red Forest still significantly impact the plant community.

Til dokument

Sammendrag

Stress can have long-lasting impacts on plants. Here we report the long-term effects of the stress hormone jasmonic acid (JA) on the defence phenotype, transcriptome and DNA methylome of Arabidopsis. Three weeks after transient JA signalling, 5-week-old plants retained induced resistance (IR) against herbivory but showed increased susceptibility to pathogens. Transcriptome analysis revealed long-term priming and/or upregulation of JA-dependent defence genes but repression of ethylene- and salicylic acid-dependent genes. Long-term JA-IR was associated with shifts in glucosinolate composition and required MYC2/3/4 transcription factors, RNA-directed DNA methylation, the DNA demethylase ROS1 and the small RNA (sRNA)-binding protein AGO1. Although methylome analysis did not reveal consistent changes in DNA methylation near MYC2/3/4-controlled genes, JA-treated plants were specifically enriched with hypomethylated ATREP2 transposable elements (TEs). Epigenomic characterization of mutants and transgenic lines revealed that ATREP2 TEs are regulated by RdDM and ROS1 and produce 21 nt sRNAs that bind to nuclear AGO1. Since ATREP2 TEs are enriched with sequences from IR-related defence genes, our results suggest that AGO1-associated sRNAs from hypomethylated ATREP2 TEs trans-regulate long-lasting memory of JA-dependent immunity.