Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

To document

Abstract

Hepatitis B Virus (HBV) infection can be prevented by vaccination. Vaccines containing the small (S)envelope protein are currently used in universal vaccination programs and achieve protective immuneresponse in more than 90% of recipients. However, new vaccination strategies are necessary for successfulimmunization of the remaining non- or low-responders. We have previously characterized a novel HBVchimeric antigen, which combines neutralization epitopes of the S and the preS1 domain of the large (L)envelope protein (genotype D). The S/preS121–47chimera produced in mammalian cells and Nicotianabenthamiana plants, induced a significantly stronger immune response in parenterally vaccinated micethan the S protein. Here we describe the transient expression of the S/preS121–47antigen in an edibleplant, Lactuca sativa, for potential development of an oral HBV vaccine. Our study shows that oral admin-istration of adjuvant-free Lactuca sativa expressing the S/preS121–47antigen, three times, at 1lg/dose,was sufficient to trigger a humoral immune response in mice. Importantly, the elicited antibodies wereable to neutralize HBV infection in an NTCP-expressing infection system (HepG2-NTCP cell line) moreefficiently than those induced by mice fed on Lactuca sativa expressing the S protein. These results sup-port the S/preS121–47antigen as a promising candidate for future development as an edible HBV vaccine.

To document

Abstract

Root rot in Norway spruce (Picea abies (L.) Karst.) causes substantial economic losses to the forestry sector. In this study, we developed a probability model for decay at breast height utilizing 18,141 increment cores sampled on temporary plots of the Norwegian National Forest Inventory. The final model showed a good fit to the data and retained significant relationships between decay and a suite of tree, stand and site variables, including diameter at breast height, stand age, altitude, growing season temperature sum (threshold 5°C), and vegetation type. By comparing model predictions with recorded decay at stump height in an independent data set, we estimated a proportionality function to adjust for the inherent underestimation of total rot that will be obtained by applying a probability model derived from increment cores sampled at breast height. We conclude that the developed model is appropriate for national and regional scenario analyses in Norway, and could also be useful as a tool for operational forestry planning. This would however require further testing on independent data, to assess how well the new model predicts decay at local scales.