Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2017

Til dokument

Sammendrag

The forest and building sector is of major importance in climate change mitigation and therefore construction materials based on forest products are of great interest. While energy efficiency has had a large focus in climate change mitigation in the building sector, the carbon footprint of the construction material is gaining relevance. The carbon footprint of construction materials can vary greatly from one type to another, the building sector is consequently demanding documentation of the carbon footprint of the materials used. Using an environmental product declaration (EPD) is an objective and standardised solution for communicating the environmental impacts of construction products and especially their carbon footprint. Nevertheless, it is challenging to include the features of forest products as pools of carbon dioxide. There is currently a focus on research into methods for the accounting of sequestered atmospheric carbon dioxide and also implementation of these methods into technical standards. This paper reviews the recent research and technical standards in this field to promote a common understanding and to propose requirements for additional information to be included in EPDs of forest-based products. The main findings show the need for reporting the contribution of biogenic carbon to the total on greenhouse gas emissions and removals over the product’s lifecycle. In order to facilitate the implementation of more advanced methods from research, the EPD should also include more detailed information of the wood used, in particular species and origin.

Til dokument

Sammendrag

Charcoal seems one of the most promising bio-reducer because of its high coke replacement ratio in blast furnaces. Nevertheless, biochar materials are subject self-combustion during storage, handling and transport, and need to be studied in order to understand and limit these phenomena. Heat-based methods: were employed to compare and determine the self-ignition parameters of four types of fresh biochar (Quercus pubescens, Cyclobalanopsis glauca, and Trigonostemon huangmosun, Bambusa vulgar) that are used as bioreducers in the silica industry. This study assumed that spontaneous combustion arises from exothermic oxygen chemisorption to fresh biochar surface. Sample mass, heat flow and CO2 desorption were measured. The weight increased very rapidly as soon as the gas stream was changed from N2 to air accompanying the heat generation for each material. Desorption isotherms were found to depend on the nature of the feedstock confirming that bamboo biochar was the most reactive one under air exposure.

Til dokument

Sammendrag

Bio-Methane Potential (BMP) tests are used to evaluate the suitability of a biomass for anaerobic digestion. BMP data are usually presented as the amount of methane produced from a kilogram of volatile solids (VS) or chemical oxygen demand (COD) of the substrate. However, the most used methods for determination of VS and COD are not always accurate. Oven drying may underestimate VS content due to loss of volatile organic compounds, and incomplete chemical oxidation may lead to underestimation of COD content. Bomb calorimetry is an attractive alternative to COD measurements, because the physical state of the biomass sample does not influence the measurement, and because sample preparation is limited. In this study, 11 biomass samples, wet and dry, were analyzed with different methods for organic content determination. COD (determined by bomb calorimetry and by wet chemistry) and VS (by Karl Fischer titration and loss on drying; LOD) were compared, and used for determination of BMP. In general, the BMP estimated on a VS basis were higher than those estimated on COD basis. For certain biomass samples the method for VS determination also greatly influenced the results; for fishery waste the BMP was estimated as 928 L kg−1 based on LOD-VS compared to 394 L kg−1 based on KF-LOD. Thus, this study shows that determination of organic content is not trivial and the method of choice strongly influences the estimation of bio-methane potentials. Bomb calorimetry offers a possibility to measure energy content directly, independent of biomass composition and physical state.

Til dokument

Sammendrag

The genus Microbacterium contains bacteria that are ubiquitously distributed in various environments and includes plant-associated bacteria that are able to colonize tissue of agricultural crop plants. Here, we report the 3,508,491 bp complete genome sequence of Microbacterium sp. strain BH-3-3-3, isolated from conventionally grown lettuce (Lactuca sativa) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017674.

Sammendrag

Detailed descriptions of individual vegetation types shown on vegetation maps can improve the ways in which the composition and spatial structure within the types are understood. The authors therefore examined dwarf shrub heath, a vegetation type covering large areas and found in many parts of the Norwegian mountains. They used data from point samples obtained in a wall-to-wall area frame survey. The point sampling method provided data that gave a good understanding of the composition and structure of the vegetation type, but also revealed a difference between variation within the vegetation type itself (intra-class variation) and variation resulting from the inclusion of other types of vegetation inside the map polygons (landscape variation). Intra-class variation reflected differences in the botanical composition of the vegetation type itself, whereas landscape variation represented differences in the land-cover composition of the broader landscape in which the vegetation type was found. Both types of variation were related to environmental gradients. The authors conclude that integrated point sampling method is an efficient way to achieve increased understanding of the content of a vegetation map and can be implemented as a supporting activity during a survey.

Til dokument

Sammendrag

The composition of plant secondary metabolites (PSMs) extensively impacts ecosystem functioning. It is vital that we understand temporal patterns in the plants’ allocation of resources to PSMs, particularly those influenced by human activity. Existing data are insufficient in the long-term perspective of perennial plants (age or ontogeny). We analysed phenolic concentrations in foliage from birch (Betula pubescens Ehr.) considered to be undamaged and growing on 5, 10 and 15 years old clear-cuts in two boreal forest landscapes in Norway, sampled at the peak of the growing season. In sum, low molecular weight phenolic concentrations decreased with age. Apart from one apigenin glycoside, the low molecular weight phenolics co-varied similarly at all ages, suggesting a lack of temporal compound-specific prioritisation of this group. In contrast, the concentration of MeOH-soluble condensed tannins increased with age. The compositional shift fits well with several hypotheses that may provide proximate explanations for age patterns in PSM allocations, including both resource constraints and external pressures. Regardless of these explanations, our study adds an important perennial perspective (plant age) to temporal PSM patterns already well-known in boreal plant phenology (foliage age).