Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2018
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Fusarium head blight and seedling blight, both caused by Fusarium spp. and Microdochium spp., and glume blotch caused by Parastagonospora nodorum, are important diseases in wheat. In Norway, wheat seed lots are routinely analysed for infestation by these pathogens using traditional methods (plating grain on PDA, recording presence or absence of fungal colonies). This method is time consuming, require knowledge within fungal morphology, and do not facilitate identification to species in all cases. Molecular methods such as quantitative PCR (qPCR) could allow detection and quantification of fungal DNA at the species level in a relatively time effective way, particularly since the method allows for automation in different steps such as DNA extraction and pipetting. Whether the latter method is suitable within seed health evaluations will depend on the relationship between the amount of DNA of the different fungal species and field performance, and the purpose of the test (evaluation of planting value, need for seed treatment, survey of fungal species, quality of grain for consumption etc). To compare the two different methods, about 150 spring wheat seed lots from the years 2016-2017 (including two cultivars) were selected for the analysis of different fungi using species-specific qPCR and compared with the results from routine testing on PDA. In the 2016 material (81 samples), a mean seed infestation rate of 26% was observed for Microdochium spp. in the PDA test. The level of Fusarium was lower (mean infestation rate of 5%). A strong relationship was observed between the percentage of seeds infested by Microdochium and the level of Microdochium DNA (sum of DNA from Microdochium majus and Microdochium nivale) quantified by qPCR (R2 of 0.76, p<0.01). The relationship between Fusarium infested seeds and the level of Fusarium DNA (sum of DNA from three species) was moderate (R2 of 0.33, p<0.01). The samples were also analysed for the presence of P. nodorum. Compared to Fusarium and Microdochium, P. nodorum was present at an intermediate level (mean infestation rate of 12%). The relationship between the two different methods was weaker for this fungus (R2 of 0.21, p<0.01) than for Fusarium and Microdochium. The relationship between germination capacity and rating of the three groups of fungi by either method was studied. Preliminary results suggest that of the three fungi, Microdochium was associated with germination capacity in the 2016 material, and that the Microdochium infestation rate on PDA was slightly better correlated to germination capacity than the level of Microdochium DNA. Further results will be presented at the conference, including the association between the relative DNA content of the different Microdochium and Fusarium species and seed germination.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Ingeborg KlingenSammendrag
Det er ikke registrert sammendrag
Forfattere
Fernanda de Cássia Neves Esteca Luis Rodrigues Italo Delalibera Júnior Ingeborg Klingen Gilberto J. de MoraesSammendrag
Det er ikke registrert sammendrag
Forfattere
Inga Marie Aasen Ingrid Sandbakken Rasa Slizyte Michael Roleda Jorunn Skjermo Åshild KrogdahlSammendrag
Det er ikke registrert sammendrag
Sammendrag
Freezing and thawing have large effects on water flow in soils since ice may block a large part of the pore space and thereby prevent infiltration and flow through the soil. This, in turn, may have consequences for contaminant transport. For example, transport of solutes contained at or close to the soil surface can be rapidly transported through frozen soils in large pores that were air filled at the time of freezing. Accounting for freezing and thawing could potentially improve model predictions used for risk assessment of contaminant leaching. A few numerical models of water flow through soil accounts for freezing by coupling Richards’ equation and the heat flow equation using of the generalized Clapeyron equation, which relates the capillary pressure to temperature during phase change. However, these models are not applicable to macroporous soils. The objective of this study was to develop and evaluate a dual-permeability approach for simulating water flow in soil under freezing and thawing conditions. To achieve this we extended the widely used MACRO-model for water flow and solute transport in macroporous soil. Richards’ equation and the heat flow equation were loosely coupled using the Clapeyron equation for the soil micropore domain. In accordance with the original MACRO model, capillary forces were neglected for the macropore domain and conductive heat flow in the macropores was not accounted for. Freezing and thawing of macropore water, hence, were solely governed by heat exchange between the pore domains. This exchange included a first-order heat conduction term depending on the temperature difference between domains and the diffusion pathlength (a proxy variable related to the distance between macropores) and convective heat flow. As far as we know, there are no analytical solutions available for water flow during freezing and thawing and laboratory data is limited for evaluation of water flow through macropores. In order to evaluate the new model approach we therefore first compared simulation results of water flows during freezing for the micropore domain to existing literature data. Our model was shown to give similar results as other available models. We then compared the first-order conductive heat exchange during freezing to a full numerical solution of heat conduction. Finally, simulations were run for water flow through frozen soil with initially air-filled macropores for different boundary conditions. Simulation results were sensitive to parameters governing the heat exchange between pore domains for both test cases.
Forfattere
Anto Raja Dominic Ole Martin Eklo Marianne Stenrød Eivind Solbakken Roar Lågbu Peter Horney Burkhard Golla Jörn StrassemeyerSammendrag
Det er ikke registrert sammendrag