Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Environment Agency, potential toxic elements (PTEs), fertiliser, soil improver, fertiliser products, growing media, circular economy, circulation of organic fertilisers, arsenic (As), cadmium (Cd), chromium Cr(tot) (Cr(III) and Cr(VI)), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), zinc (Zn). Background and purpose of the report The potentially toxic elements (PTE) arsenic (As), cadmium (Cd), chromium Cr(tot) (Cr(III) and Cr(VI)), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn) occur as ingredients or contaminants in many fertilisers, soil improvers, engineered soil and growing media. Application of these fertiliser products might represent a risk towards the environment, farm animals and humans, particularly when applied annually over several years. The present risk assessment evaluates the application of selected fertilisers according to certain scenarios for representative Norwegian agricultural areas, from Troms in the North to Ås in Southeastern and Time in Southwestern Norway, with different soil properties, precipitation and PTE concentration in present agricultural soil. There is an increasing trend to produce locally (e.g. in urban farming) and home-grown vegetables that are cultivated in engineered soil and growth media. The maximum levels (MLs) set for PTEs in different organic fertilisers, engineered soil and growing media for use in urban farming, home growing and the cultivation of vegetables and garden fruits, and a set of MLs also for application in agricultural cultivation of crops, have been evaluated. Environmental fate processes and the transfer of PTEs have been modelled and the environmental risks for terrestrial and aquatic organisms, including from secondary poisoning have been estimated. Potential risks to humans and farmed animals by increased exposure to PTEs from, respectively, agriculturally produced crops, vegetables cultivated at home and urban farming or forage and grazing have been evaluated. The recycling of nutrients is urgently needed to achieve circular economy, but the derived sustainable products have to be safe, which requires the introduction of and adherence to science-based maximum levels of unwanted substances (e.g. pollutants). This assessment evaluates consequences of the application of different fertiliser products: mineral P fertilisers, manure from cattle, pig, poultry and horse, fish sludge, digestates and sewage sludge - in order to identify PTE sources with potential environmental, animal and human health risks, and to evaluate the appropriateness of the current MLs regarding different applications of organic-based fertilisers, engineered soil and growing media at present, and in a 100-year perspective. Approach and methods applied The approach for environmental and health risk assessments builds on previous work performed for hazardous substances in soil (e.g. VKM 2019, VKM 2014, VKM, 2009, Six and Smolders, 2014). Concentrations of PTEs in soil over time were calculated using a mass balance model, which considers the input by atmospheric deposition, use of fertilisers and soil improvers, as well as loss by leaching, run-off and plant uptake. The resulting first-order differential equation was solved analytically and implemented into Excel®. Run-off and loss by leaching were estimated from data on precipitation, infiltrating fraction and run-off fraction of the water under consideration of the distribution coefficient Kd for the concentration ratio of bulk soil-to-water. This Kd value takes aging sufficiently into account and is thus more realistic than those derived from batch tests. The Kd was estimated separately for each region using established regression equations, with soil pH, organic matter content and clay content as predictors. ...........

Sammendrag

På oppdrag fra vannområdet Bunnefjorden med Årungen- og Gjersjøvassdraget (PURA) er den empiriske modellen Agricat 2 brukt til å beregne potensialet for erosjon og fosforavrenning fra jordbruksarealer i 16 tiltaksområder, ved faktisk drift i 2021. Arealfordelingen av faktisk drift (vekst, jordarbeiding og miljøtiltak) i 2021 har framkommet av registerdata fra Landbruksdirektoratet og føringer/informasjon fra Follo Landbrukskontor, og er fordelt på de dyrka arealene etter bestemte rutiner i modellen. Arealfordelingsrutinen i modellen ga følgende utbredelse av kombinasjon vekst/jordarbeiding i vannområdet for 2021: 34 % stubb (jordarbeiding vår eller direktesåing), 19 % gras, 18 % vårkorn med høstpløying, 13 % høstkorn med høstpløying, 12 % høstharving til vår- og høstkorn samt frukt og bær, og 4 % poteter og grønnsaker. Arealfordelingen varierte mellom tiltaksområder. Eksisterende grasdekte kantsoner og fangdammer inngikk også i beregningene. Jord- og fosfortap i vannområdet PURA i 2021 ble beregnet til henholdsvis 3,5 kilotonn SS og 5,9 tonn TP. For individuelle tiltaksområder varierte jordtapet fra nær 0 til 1,4 kilotonn, og fosfortap fra nær 0 til 2,5 tonn. Forskjeller i drift bidro til å forklare forskjellene mellom tiltaksområder.

Til dokument

Sammendrag

This study investigates the combined impacts of climate change and agricultural conservation on the magnitude and uncertainty of nutrient loadings in the Maumee River Watershed, the second-largest watershed of the Laurentian Great Lakes. Two scenarios — baseline agricultural management and increased agricultural conservation — were assessed using an ensemble of five Soil and Water Assessment Tools driven by six climate models. The increased conservation scenario included raising conservation adoption rates from a baseline of existing conservation practices to feasible rates in the near future based on farmer surveys. This increased adoption of winter cover crops on 6%–10% to 60% of cultivated cropland; subsurface placement of phosphorus fertilizers on 35%–60% to 68% of cultivated cropland; and buffer strips intercepting runoff from 29%–34% to 50% of cultivated cropland. Increased conservation resulted in statistically significant (p ≤ 0.05) reductions in annual loads of total phosphorus (41%), dissolved reactive phosphorus (18%), and total nitrogen (14%) under the highest emission climate scenario (RCP 8.5). While nutrient loads decreased with increased conservation relative to baseline management for all watershed models, different conclusions on the true effectiveness of conservation under climate change may be drawn if only one watershed model was used.

Sammendrag

Elvemiljøet langs Isi- og Øverlandselva i Bærum kommune påvirkes av mange ulike faktorer, og NIBIO fikk i 2021 i oppdrag fra kommunen å beregne forurensningstilførsler til de to vassdragene for 2020 fordelt på tilsammen 19 delnedbørfelt (ni delnedbørfelt i Øverlandselva og ti i Isielva). Denne rapporten tar for seg resultater fra Øverlandselva (delrapport 1), mens resultatene fra Isielva presenteres i delrapport 2. Formålet med prosjektet var å utvikle et kilderegnskap for hvert av delnedbørfeltene ved å utarbeide metoder for beregning av tilførsler av næringsstoffer og partikler fra sektorene avløp, landbruk, samferdsel og andre naturlige og menneskeskapte kilder. I tillegg ble det beregnet fosfor-, nitrogen- og partikkeltilførsler, basert på historiske data for vannkvalitet i vassdragene. Denne rapporten beskriver metoder og resultater fra kilderegnskapet for 2020 og masseberegninger. I tillegg har NIBIO utviklet en arbeidsfil med oversikt over bidragene fra de ulike kildene i alle delnedbørfelt med resultater fra 2020, og en veiledning med mulighet for å oppdatere regnskapet for fremtidige år.

Sammendrag

Elvemiljøet langs Isi- og Øverlandselva i Bærum kommune påvirkes av mange ulike faktorer, og NIBIO fikk i 2021 i oppdrag fra kommunen å beregne forurensningstilførsler til de to vassdragene for 2020 fordelt på tilsammen 19 delnedbørfelt (ni delnedbørfelt i Øverlandselva og ti i Isielva). Denne rapporten tar for seg resultater fra Isielva (delrapport 2), mens resultatene fra Øverlandselva presenteres i delrapport 1. Formålet med prosjektet var å utvikle et kilderegnskap for hvert av delnedbørfeltene ved å utarbeide metoder for beregning av tilførsler av næringsstoffer og partikler fra sektorene avløp, landbruk, samferdsel og andre naturlige og menneskeskapte kilder. I tillegg ble det beregnet fosfor-, nitrogen- og partikkeltilførsler, basert på historiske data for vannkvalitet i vassdragene. Denne rapporten beskriver metoder og resultater fra kilderegnskapet for 2020 og masseberegninger. I tillegg har NIBIO utviklet en arbeidsfil med oversikt over bidragene fra de ulike kildene i alle delnedbørfelt med resultater fra 2020, og en veiledning med mulighet for å oppdatere regnskapet for fremtidige år.

Sammendrag

Vassdrag i jordbruksdominerte nedbørfelt kan være sterkt påvirket av næringsstoffer fra jordbruksdrift, men også fra andre kilder som spredt avløp. For å redusere tilførslene er det nødvendig å vite hvilke kilder som bidrar og hvilke tiltak som gir effektiv reduksjon i tilførslene. I dette prosjektet har vi utarbeidet et kilderegnskap for fosfor og presentert tiltak og tiltakseffekter for to jordbruksdominerte nedbørfelt i Trøndelag (Hotranvassdraget i Levanger kommune og Langbekken-Brubakkbekken i Melhus kommune). Denne rapporten presenterer metoder og resultater for kilderegnskap og tiltakseffekter for nedbørfeltet til Langbekken-Brubakkbekken. Delrapport 1 presenterer tilsvarende arbeid gjort for Hotranvassdraget. Rapportene er delvis finansiert med regionale utviklingsmidler gjennom Trøndelag fylkeskommune.