Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

Accurate estimation of site productivity is essential for forest projections and scenario modelling. We present and evaluate models to predict site index (SI) and whether a site is productive (potential total stem volume production ≥ 1 m3·ha−1·year−1) in a wall-to-wall high-resolution (16 m × 16 m) SI map for Norway. We investigate whether remotely sensed data improve predictions. We also study the advantages and disadvantages of using boosted regression trees (BRT), a machine-learning algorithm, to create high-accuracy SI maps. We use climatic and topographical data, soil parent material, a land resource map, and depth to water, together with Sentinel-2 satellite images and airborne laser scanning metrics, as predictor variables. We use the SI observed at more than 10 000 National Forest Inventory (NFI) sample plots throughout Norway to fit BRT models and validate the models using 5822 independent temporary plots from the NFI. We benchmark our results against SI estimates from forest monitoring inventories. We find that the SI from BRT has root mean squared error (RMSE) ranging from 2.3 m (hardwoods) to 3.6 m (spruce) when tested against independent validation data from the NFI temporary plots. These RMSEs are similar or marginally better than an evaluation of SI estimates from operational forest management plans where SI normally stems from manual photo interpretation.

Til dokument

Sammendrag

Almost 95% of the area in Norway is wilderness and 38% of the land area is covered by woods. These areas are abundant in valuable renewable resources, including wild berries. In our neighbouring countries, Sweden and Finland, wild berries are already a big industry. At the same time, on the market the Norwegian wild berries are almost non-existent and berries are left unexploited. Lingonberry (Vaccinium vitis-idaea) is one of the most abundant and economically important wild berries in the Nordic countries. Nevertheless, lingonberry has a large untapped potential due to its unique health effects and potential for increased value creation. It is estimated that 111,500 t of lingonberry are produced in the Norwegian woods. Norway is a long and diverse country with a range of climatic conditions. Adaptations to different conditions can give differences in both yield and quality of wild berries. Yields vary enormously from year to year and among different locations. A steady supply, predictable volumes and high quality are vital for successful commercialization of wild berries. To increase the utilization of berries, there is a need for increased knowledge regarding availability and quality variation of the berries. In addition, the Norwegian market suffers from high labour costs and cannot compete in product price. Innovative solutions and new knowledge on quality aspects can open possibilities for value creation. Toward achieving this goal, we have created a project called “WildBerries”, the main objective of which is to produce research-based knowledge that will create the basis for increased commercial utilization of Norwegian wild berries.

Sammendrag

Sustainable forest management systems require operational measures to preserve the functional design of forest roads. Frequent road data collection and analysis are essential to support target-oriented and efficient maintenance planning and operations. This study demonstrates an automated solution for monitoring forest road surface deterioration using consumer-grade optical sensors. A YOLOv5 model with StrongSORT tracking was adapted and trained to detect and track potholes in the videos captured by vehicle-mounted cameras. For model training, datasets recorded in diverse geographical regions under different weather conditions were used. The model shows a detection and tracking performance of up to a precision and recall level of 0.79 and 0.58, respectively, with 0.70 mean average precision at an intersection over union (IoU) of at least 0.5. We applied the trained model to a forest road in southern Norway, recorded with a Global Navigation Satellite System (GNSS)−fitted dashcam. GNSS-delivered geographical coordinates at 10 Hz rate were used to geolocate the detected potholes. The geolocation performance over this exemple road stretch of 1 km exhibited a root mean square deviation of about 9.7 m compared to OpenStreetMap. Finally, an exemple road deterioration map was compiled, which can be used for scheduling road maintenance operations.

Sammendrag

Skogens helsetilstand påvirkes i stor grad av klima og værforhold, enten direkte ved tørke, frost og vind, eller indirekte ved at klimaet påvirker omfanget av soppsykdommer og insektangrep. Klimaendringene og den forventede økningen i klimarelaterte skogskader gir store utfordringer for forvaltningen av framtidas skogressurser. Det samme gjør invaderende skadegjørere, både allerede etablerte arter og nye som kan komme til Norge i nær framtid. I denne rapporten presenteres resultater fra skogskadeovervåkingen i Norge i 2022 og trender over tid for følgende temaer: (i) Landsrepresentativ skogovervåking; (ii) Intensiv skogovervåking; (iii) Overvåking av bjørkemålere i Troms og Finnmark; (iv) Barkbilleovervåkingen; (v) Furuvednematode; (vi) Askeskuddsyke; (vii) Andre spesielle skogskader i 2022.

Sammendrag

Key message We studied size distributions of decay-affected Norway spruce trees using cut-to-length harvester data. The harvester data comprised tree-level decay and decay severity recordings from 101 final felling stands, which enabled to analyze relationships between size distributions of all and decay-affected trees. Distribution matching technique was used to transfer the size distribution of all trees into the diameter at breast height (DBH) distribution of decay-affected trees. Context Stem decay of Norway spruce (Picea abies [L.] Karst.) results in large economic losses in timber production in the northern hemisphere. Forest management planning typically requires information on tree size distributions. However, size distributions of decay-affected trees generally remain unknown impeding decision-making in forest management planning. Aims Our aim was to analyze and model relationships between size distributions of all and decay-affected Norway spruce trees at the level of forest stands. Methods Cut-to-length harvester data of 93,456 trees were collected from 101 final felling stands in Norway. For each Norway spruce tree (94% of trees), the presence and severity of stem decay (incipient and advanced) were recorded. The stand-level size distributions (diameter at breast height, DBH; height, H) of all and decay-affected trees were described using the Weibull distribution. We proposed distribution matching (DM) models that transform either the DBH or H distribution of all trees into DBH distributions of decay-affected trees. We compared the predictive performance of DMs with a null-model that refers to a global Weibull distribution estimated based on DBHs of all harvested decay-affected trees. Results The harvester data showed that an average-sized decay-affected tree is larger and taller compared with an average-sized tree in a forest stand, while trees with advanced decay were generally shorter and thinner compared with trees having incipient decay. DBH distributions of decay-affected trees can be matched with smaller error index (EI) values using DBH (EI = 0.14) than H distributions (EI = 0.31). DM clearly outperformed the null model that resulted in an EI of 0.32. Conclusions The harvester data analysis showed a relationship between size distributions of all and decay-affected trees that can be explained by the spread biology of decay fungi and modeled using the DM technique. Keywords Root and butt rot, Heterobasidion spp., Armillaria spp., Cut-to-length harvester, Forest management and planning

Sammendrag

Skogens helsetilstand påvirkes i stor grad av klima og værforhold, enten direkte ved tørke, frost og vind, eller indirekte ved at klimaet påvirker omfanget av soppsykdommer og insektangrep. Klimaendringene og den forventede økningen i klimarelaterte skogskader gir store utfordringer for forvaltningen av framtidas skogressurser. Det samme gjør invaderende skadegjørere, både allerede etablerte arter og nye som kan komme til Norge i nær framtid. I denne rapporten presenteres resultater fra skogskadeovervåkingen i Norge i 2021 og trender over tid for følgende temaer: (i) Landsrepresentativ skogovervåking; (ii) Skogøkologiske analyser og målinger av luftkjemi på de intensive overvåkingsflatene; (iii) Overvåking av bjørkemålere i Troms og Finnmark; (iv) Barkbilleovervåkingen 2021 og mulig overgang til to generasjoner; (v) Asiatisk askepraktbille – en dørstokkart? (vi) Overvåking av askeskuddsyke; (vii) Andre spesielle skogskader i 2021.

2022

Sammendrag

The number of people affected by snow avalanches during recreational activities has increased over the recent years. An instrument to reduce these numbers are improved terrain classification systems. One such system is the Avalanche Terrain Exposure Scale (ATES). Forests can provide some protection from avalanches, and information on forest attributes can be incorporated into avalanche hazard models such as the automated ATES model (AutoATES). The objectives of this study were to (i) map forest stem density and canopy-cover based on National Forest Inventory and remote sensing data and, (ii) use these forest attributes as input to the AutoATES model. We predicted stem density and directly calculated canopy-cover in a 20 Mha study area in Norway. The forest attributes were mapped for 16 m × 16 m pixels, which were used as input for the AutoATES model. The uncertainties of the stem number and canopy-cover maps were 30% and 31%, respectively. The overall classification accuracy of 52 ski-touring routes in Western Norway with a total length of 282 km increased from 55% in the model without forest information to 67% when utilizing canopy cover. The F1 score for the three predicted ATES classes improved by 31%, 9%, and 6%.