Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Til dokument

Sammendrag

Synthetic Aperture Radar (SAR) data have gained interest for a variety of remote sensing applications, given the capability of SAR sensors to operate independent of solar radiation and day/night conditions. However, the radiometric quality of SAR images is hindered by speckle noise, which affects further image processing and interpretation. As such, speckle reduction is a crucial pre-processing step in many remote sensing studies based on SAR imagery. This study proposes a new adaptive de-speckling method based on a Gaussian Markov Random Field (GMRF) model. The proposed method integrates both pixel-wised and contextual information using a weighted summation technique. As a by-product of the proposed method, a de-speckled pseudo-span image, which is obtained from the least-squares analysis of the de-speckled multi-polarization channels, is also produced. Experimental results from the medium resolution, fully polarimetric L-band ALOS PALSAR data demonstrate the effectiveness of the proposed algorithm compared to other well-known de-speckling approaches. The de-speckled images produced by the proposed method maintainthe mean value of the original image in homogenous areas, while preserving the edges of features in heterogeneous regions. In particular, the equivalent number of look (ENL) achieved using the proposed method improves by about 15% and 47% compared to the NL-SAR and SARBM3D de-speckling approaches, respectively. Other evaluation indices, such as the mean and variance of the ratio image also reveal the superiority of the proposed method relative to other de-speckling approaches examined in this study.

Sammendrag

A novel method for age-independent site index estimation is demonstrated using repeated single-tree airborne laser scanning (ALS) data. A spruce-dominated study area of 114 km2 in southern Norway was covered by single-tree ALS twice, i.e. in 2008 and 2014. We identified top height trees wall-to-wall, and for each of them we derived based on the two heights and the 6-year period length. We reconstructed past, annual height growth in a field campaign on 31 sample trees, and this showed good correspondence with ALS based heights. We found a considerable increase in site index, i.e. about 5 m in the H40 system, from the old site index values. This increase corresponded to a productivity increase of 62%. This increase appeared to mainly represent a real temporal trend caused by changing growing conditions. In addition, the increase could partly result from underestimation in old site index values. The method has the advantages of not requiring tree-age data, of representing current growing conditions, and as well that it is a cost-effective method with wall-towall coverage. In slow-growing forests and short time periods, the method is least reliable due to possible systematic differences in canopy penetration between repeated ALS scans.

Til dokument

Sammendrag

Det er ikke registrert sammendrag