Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Denne rapporten gir en oversikt over tilstanden i skog som var vernet per. 1.1.2021. Datamaterialet som er utgangspunktet for rapporten er registreringer gjennomført av Landsskogtakseringen, gjennom «Overvåkingsprogrammet for skog i verneområder». Registreringene er utført i løpet av femårsperioden 2017-2021. Utvalgte resultater: • Vernet skog omfattet per 1.1. 2021 totalt 592 481 ha, tilsvarende 4,9 prosent av det totale skogarealet. • 3,7 prosent av den produktive skogen, og 7,9 prosent av den uproduktive skogen i landet finnes i vernet skog, der skogbruk ikke er tillatt. • I produktiv skog er andelen skogareal i klassene middels og høy+ svært høy bonitet underrepresentert samlignet med skogen generelt. • Skogen i verneområder er generelt eldre og har en større andel skog i senere utviklingstrinn. Biologisk gammel skog etter Landsskogtakseringens definisjon utgjør nærmere tre ganger så høy andel i den produktive delen av vernet skogareal som i produktiv skog totalt. • Det stående volumet i verneområdene utgjør 4,1 prosent av totalt stående volum. • Gjennomsnittlig tilvekst i skog som var vernet per 1.1.2016 er lavere enn gjennomsnittet for skog generelt. • Vernet skog inneholder mer volum død ved per hektar i gjennomsnitt enn øvrig skog. • I produktiv skog er MiS-livsmiljøene “liggende dødved” og “stående dødved”, samt “gamle trær” vanligere i verneområdene. For uproduktiv skog er “gamle trær” vanligere. I tillegg presenteres resultater som viser hvordan den vernede skogen har utviklet seg siden forrige taksering, som ble gjennomført 2012-2016.
Forfattere
Knut Ole VikenSammendrag
Kontrolltaksering av et utvalg permanente prøveflater i Landsskogtakseringen ble gjennomført i 2017, 2018 og 2019. Det er for de fleste variablene som ble sammenlignet bra samsvar mellom kontrolldataene og registreringene fra taksten, men for enkelte variable er det noe avvik. Variabler som er bestemt tidligere, og der lagleder kan bekrefte eller endre tidligere verdi/klasse, viser bra samsvar. Det gjelder grunnleggende arealklassifisering som arealtype og arealanvendelse, samt bestandsvariable som kronedekningsprosent, bonitet, bestandsalder og hogstklasse. Kronehøyde, kronetetthet, stammeklasse og blåbærdekningsprosent er variabler der det forekommer systematiske uoverensstemmelser og/eller avvik. Disse variablene har trolig forbedringspotensialer ved å kjøre grundigere opplæring, og mer kalibrering og kursing av feltarbeiderne.
Forfattere
Ana Maria De Lera Garrido Terje Gobakken Marius Hauglin Erik Næsset Ole Martin BollandsåsSammendrag
The aim of this study was to analyze the accuracy of predictions of dominant height, mean height, basal area, and volume from the nationwide forest attribute map (SR16). The analysis took advantage of field observations from 33 different forest inventory projects across Norway used for validation. Forest attributes for more than 5000 plots were predicted using non-stratified and stratified models of SR16 and the predictions were compared against corresponding ground reference values. Finally, the effect of different factors that might have influenced the prediction errors were analyzed using partial least squared regression (PLSR) to determine under which conditions the SR16 is less apt. The overall results across all plots were adequate (RMSE of 10%, MD of 2% for dominant and mean height; RMSE of 28%, MD of 4% for basal area; RMSE of 31%, MD of 5% for volume). However, when the accuracy was assessed locally for each inventory project, large differences in accuracy were observed. The MD% values for some inventory projects were substantial (>30% for basal area and volume). The results showed that stratification did not necessarily improve the results and that factors related to the forest structure had the greatest impact on the PLSR analysis.
Forfattere
Alexander Becker Stefania Russo Stefano Puliti Nico Lang Konrad Schindler Jan Dirk WegnerSammendrag
Monitoring and managing Earth’s forests in an informed manner is an important requirement for addressing challenges like biodiversity loss and climate change. While traditional in situ or aerial campaigns for forest assessments provide accurate data for analysis at regional level, scaling them to entire countries and beyond with high temporal resolution is hardly possible. In this work, we propose a method based on deep ensembles that densely estimates forest structure variables at country-scale with 10-m resolution, using freely available satellite imagery as input. Our method jointly transforms Sentinel-2 optical images and Sentinel-1 syntheticaperture radar images into maps of five different forest structure variables: 95th height percentile, mean height, density, Gini coefficient, and fractional cover. We train and test our model on reference data from 41 airborne laser scanning missions across Norway and demonstrate that it is able to generalize to unseen test regions, achieving normalized mean absolute errors between 11% and 15%, depending on the variable. Our work is also the first to propose a variant of so-called Bayesian deep learning to densely predict multiple forest structure variables with well-calibrated uncertainty estimates from satellite imagery. The uncertainty information increases the trustworthiness of the model and its suitability for downstream tasks that require reliable confidence estimates as a basis for decision making. We present an extensive set of experiments to validate the accuracy of the predicted maps as well as the quality of the predicted uncertainties. To demonstrate scalability, we provide Norway-wide maps for the five forest structure variables.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Inger Martinussen Mathias Amundsen Aksel Granhus Antje Gonera Marius Hauglin Anne Linn Hykkerud Laura Jaakola Mikko Kurttila Jari Miina Rainer Peltola Gesine Schmidt Josefine Skaret Baoru Yang Kjersti AabySammendrag
Almost 95% of the area in Norway is wilderness and 38% of the land area is covered by woods. These areas are abundant in valuable renewable resources, including wild berries. In our neighbouring countries, Sweden and Finland, wild berries are already a big industry. At the same time, on the market the Norwegian wild berries are almost non-existent and berries are left unexploited. Lingonberry (Vaccinium vitis-idaea) is one of the most abundant and economically important wild berries in the Nordic countries. Nevertheless, lingonberry has a large untapped potential due to its unique health effects and potential for increased value creation. It is estimated that 111,500 t of lingonberry are produced in the Norwegian woods. Norway is a long and diverse country with a range of climatic conditions. Adaptations to different conditions can give differences in both yield and quality of wild berries. Yields vary enormously from year to year and among different locations. A steady supply, predictable volumes and high quality are vital for successful commercialization of wild berries. To increase the utilization of berries, there is a need for increased knowledge regarding availability and quality variation of the berries. In addition, the Norwegian market suffers from high labour costs and cannot compete in product price. Innovative solutions and new knowledge on quality aspects can open possibilities for value creation. Toward achieving this goal, we have created a project called “WildBerries”, the main objective of which is to produce research-based knowledge that will create the basis for increased commercial utilization of Norwegian wild berries.