Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2016

Sammendrag

The aims of this study were: (1) to assess the trends of climatic variables in two contrasting geographical locations: central Poland and northern Norway; and (2) to evaluate the influence of the detected trends on timothy yields. This grass species was selected for its high importance for forage production in Norway as well as in Poland. For the assessment of climate trends, historical meteorological data, which cover time series from 1985 onwards, were used. Trends of various climate condition indicators were investigated. Data on timothy yields were collected beginning in the 1990s for Brody in Poland from cultivar testing experiments and Holt in Norway by the national cultivar-testing program. The results indicated that in central Poland air temperature in specific months significantly decrease the annual yield of timothy while in northern Norway many climatic variables, such as earlier start and prolonged length of growing season, may have a slightly positive impact on timothy productivity.

Til dokument

Sammendrag

Key message In order to obtain the necessary information for decision making etc., it is of increasing importance to be able to assess increment in a reliable way. Only repeated measurements on permanent sample plots in national forest inventories can provide accurate and comprehensive information on the various components of annual increment. Such inventory systems are increasingly employed in European countries. The felling/increment ratio, characterizing wood use sustainability, should be expressed as the ratio of felled living trees (excluding dead trees) and net increment. Context Reporting of gross and net annual increment is an element of international forest resource assessments and crucial for sustainable forest management. A number of approaches exist for the estimation of increment and its various sub-components. Aims The main objectives of the study are to assess in detail what methods European countries have used and are planning to use in the future for international reporting of increment. Also, the usefulness of the various approaches for the assessment of increment is evaluated. Methods A questionnaire asking about their assessment methods was distributed among the UNECE/FAO national correspondents of all European countries and members of the UNECE/FAO Team of Specialists on Monitoring Sustainable Forest Management. Databases of the Temperate and Boreal Forest Resource Assessment 2000 and of the State of Europe’s Forests 2011 were also used. Furthermore, the methodological background was described on the basis of relevant literature sources and some examples for country groups presented. Results Countries have indicated what methods they used for assessment of various increment components, and the percentage of countries, forest area, and growing stock corresponding to these replies has been calculated. With regard to gross annual increment, these metrics represent about one third for inventories based on permanent sample plots, but this percentage is on the increase. Conclusion The concept of the “control method” for forest management was developed more than 100 years ago but only utilized at the local level. The same methodology is now widely used at the national and regional level due to the implementation of modern national forest inventories using permanent sample plots. Care should be taken to utilize the data correctly for international forest resource assessments, in order to, e.g., avoid double counting of dead trees.

Sammendrag

Researchers in plant pathology and entomology often study the interaction between a host plant and its pathogen or an insect pest separately. Although studying single pathogen or insect interactions with a host plant is critical to understand the basic infection processes and to model each disease or pest attack separately, this is an extreme simplification of nature’s complexity, where multiple pests and pathogens often appear in parallel and interact with each other and their host plant. Effective management of pests and diseases require understanding of the complex interaction beteween diseases and pests on the host. Under natural conditions, wheat plants are subjected to attack by several insects and pathogens simultaneously or sequentially. The Bird cherry-oat aphid (Rhopalosiphum padi) and the necrotrophic pathogen Parastagonospora nodorum (syn. Stagonospora nodorum) the causal agent of Stagonospora nodorum blotch (SNB) are economically important pests of wheat in Norway. Since they colonize a common host, they may interact directly through competition for resources or indirectly by affecting the host response either positively (induced resistance) or negatively (induced susceptibility or biopredisposition). The effect of aphid infestation on P. nodorum infection and development of the disease could be an important factor in predicting SNB epidemics. However, studies on this multitrophic interactions are scarce. We conducted controlled greenhouse experiments to study the effect of aphid infestation on subsequent SNB development. The wheat cultivar ‘Bjarne’ was treated as follows:1) Aphid infested + insecticide sprayed + P. nodorum inoculated; 2) Insecticide sprayed + P. nodorum inoculated; 3) Water sprayed + P. nodorum inoculated; 4) Control plants (without aphid, insecticide or P. nodorum). When plants were at ca. BBCH 37, 18 adult female aphids (R. padi) were released per pot (treatment 1). Aphid inoculated plants were kept in an insect proof cage in a greenhouse compartment at 20°C, 70% RH, and 16 h photoperiod. Plants for the other treatments were kept in separate insect proof cages in the same greenhouse. Ten days after aphid release, plants infested with aphids (treatment 1) were sprayed with the insecticide BISCAYA (a.i. thiacloprid) at recommended concentration to remove aphids. Plants in treatment 2 and 3 were sprayed with the insecticide and water, respectively. Twenty-four hours after application of the insecticide or water, plants in treatment 1, 2, and 3 were inoculated with P. nodorum spore suspension (106 spores ml-1). The experiment included three replicates and was repeated two times. SNB incidence and severity were recorded. SNB incidence and severity were significantly higher on aphid infested plants than on non-infested plants (P < 0.05). Ten days after P. nodorum inoculation, disease severity were about 3-fold higher on aphid infested plants (treatment 1) than on non-infested plants (treatment 2 and 3). Plants in the blank control (treatment 4) were free of aphids and showed no symptoms of SNB . Infestation of wheat plants by the bird cherry-oat aphid prior to fungal inoculation enhanced the severity of SNB. P. nodorum is a necrotrophic pathogen that lives on nutrients from disintegrated plant cells. The increase in severity of SNB on aphid infested plants could be due to the increased number of dead or dying cells around the aphids feeding sites. However, whether aphids activity induced local or systemic susceptbility to plants is not yet known and needs to be studied further.