Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2018
Forfattere
Seyda Özkan-Gülzari Bouda Vosough Ahmadi Alistair W. StottSammendrag
Impaired animal health causes both productivity and profitability losses on dairy farms, resulting in inefficient use of inputs and increase in greenhouse gas (GHG) emissions produced per unit of product (i.e. emissions intensity). Here, we used subclinical mastitis as an exemplar to benchmark alternative scenarios against an economic optimum and adjusted herd structure to estimate the GHG emissions intensity associated with varying levels of disease. Five levels of somatic cell count (SCC) classes were considered namely 50,000 (i.e. SCC50), 200,000, 400,000, 600,000 and 800,000 cells/mL (milliliter) of milk. The effects of varying levels of SCC on milk yield reduction and consequential milk price penalties were used in a dynamic programming (DP) model that maximizes the profit per cow, represented as expected net present value, by choosing optimal animal replacement rates. The GHG emissions intensities associated with different levels of SCC were then computed using a farm-scale model (HolosNor). The total culling rates of both primiparous (PP) and multiparous (MP) cows for the five levels of SCC scenarios estimated by the model varied from a minimum of 30.9% to a maximum of 43.7%. The expected profit was the highest for cows with SCC200 due to declining margin over feed, which influenced the DP model to cull and replace more animals and generate higher profit under this scenario compared to SCC50. The GHG emission intensities for the PP and MP cows with SCC50 were 1.01 kg (kilogram) and 0.95 kg carbon dioxide equivalents (CO 2 e) per kg fat and protein corrected milk (FPCM), respectively, with the lowest emissions being achieved in SCC50. Our results show that there is a potential to reduce the farm GHG emissions intensity by 3.7% if the milk production was improved through reducing the level of SCC to 50,000 cells/mL in relation to SCC level 800,000 cells/mL. It was concluded that preventing and/or controlling subclinical mastitis consequently reduces the GHG emissions per unit of product on farm that results in improved profits for the farmers through reductions in milk losses, optimum culling rate and reduced feed and other variable costs. We suggest that further studies exploring the impact of a combination of diseases on emissions intensity are warranted.
Forfattere
Anita Nussbaumer Peter Waldner Vladislav Apuhtin Fatih Aytar Sue Benham Filippo Bussotti Johannes Eichhorn Nadine Eickenscheidt Petr Fabianek Lutz Falkenried Stefan Leca Martti Lindgren María José Manzano Serrano Stefan Neagu Seppo Nevalainen Jozef Pajtik Nenad Potočić Pasi Rautio Geert Sioen Vidas Stakėnas Celal Tasdemir Iben Margrete Thomsen Volkmar Timmermann Liisa Ukonmaanaho Arne Verstraeten Sören Wulff Arthur GesslerSammendrag
Mast seeding, the synchronised occurrence of large amounts of fruits and seeds at irregular intervals, is a reproductive strategy in many wind-pollinated species. Although a series of studies have investigated mast year (MY) patterns in European forest tree species at the regional scale, there are few recent evaluations at a European scale on the impact of weather variables (weather cues) and resource dynamics on mast behaviour. Thus the main objective of this study is to investigate the impact of specific weather conditions, as environmental drivers for MYs, on resources in Fagus sylvatica L., Quercus petraea (Matt.)Liebl., Quercus robur L., Picea abies (L.) Karst. and Pinus sylvestris L. at a European level and to explore the robustness of the relationships in smaller regions within Europe. Data on seed production originating from the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) were analysed. Three beta regression models were applied to investigate the impact of seasonal weather variables on MY occurrence, as well as the influence of fruiting intensity levels in the years prior to MYs. Resource dynamics are analysed at three different spatial scales (continent, countries and ecoregions). At a European scale, important weather cues for beech MYs were a cold and wet summer two years before a MY, a dry and warm summer one year before a MY and a warm spring in the MY. For spruce, a cold and dry summer two years prior to a MY and a warm and dry summer in the year before the MY showed the strongest associations with the MY. For oak, high spring temperature in the MY was the most important weather cue. For beech and spruce, and to some extent also for oak species, the best fitting models at European scale were well reflected by those found at smaller scales. For pine, best fitting models were highly diverse concerning weather cues. Fruiting levels were high in all species two years before the MY and also high one year before the MY in the oak species and in pine. In beech, fruiting levels one year before the MY were not important and in spruce, they were inconsistent depending on the region. As a consequence, evidence of resource depletion could only be seen in some regions for spruce.
Forfattere
Ahmad Hamidov Katharina Helming Gianni Bellocchi Waldemar Bojar Tommy Dalgaard Bhim Bahadur Ghaley Christian Hoffmann Ian Holman Annelie Holzkämper Dominika Krzeminska Sigrun Hjalmarsdottir Kværnø Heikki Lehtonen Georg Niedrist Lillian Øygarden Pytrik Reidsma Pier Paolo Roggero Teodor Rusu Cristina Santos Giovanna Seddaiu Eva Skarbøvik Domenico Ventrella Jacek Żarski Martin SchönhartSammendrag
Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case‐studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.
Forfattere
Jannis von Buttlar Jakob Zscheischler Anja Rammig Sebastian Sippel Markus Reichstein Alexander Knohl Martin Jung Olaf Menzer M. Altaf Arain Nina Buchmann Alessandro Cescatti Damiano Gianelle Gerard Kiely Beverly E. Law Vincenzo Magliulo Hank Margolis Harry McCaughey Lutz Merbold Mirco Migliavacca Leonardo Montagnani Walter Oechel Marian Pavelka Matthias Peichl Serge Rambal Antonio Raschi Russell L. Scott Francesco P. Vaccari Eva van Gorsel Andrej Varlagin Georg Wohlfahrt Miguel D. MahechaSammendrag
Extreme climatic events, such as droughts and heat stress, induce anomalies in ecosystem–atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme-event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30-year time period. We then used FLUXNET eddy covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they downregulated GPP, resulting in a moderate reduction in the ecosystem's carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a downregulation after about 2 weeks. This confirms earlier theories that not only the magnitude but also the duration of an extreme event determines its impact. Our study corroborates the results of several local site-level case studies but as a novelty generalizes these findings on the global scale. Specifically, we find that the different response functions of the two antipodal land–atmosphere fluxes GPP and Reco can also result in increasing NEP during certain extreme conditions. Apparently counterintuitive findings of this kind bear great potential for scrutinizing the mechanisms implemented in state-of-the-art terrestrial biosphere models and provide a benchmark for future model development and testing.
Forfattere
Anto Raja Dominic Ole Martin Eklo Marianne Stenrød Eivind Solbakken Roar Lågbu Peter Horney Burkhard Golla Jörn StrassemeyerSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Jorunn BørveSammendrag
Det er ikke registrert sammendrag
Forfattere
Jorunn BørveSammendrag
Det er ikke registrert sammendrag
Forfattere
Kalev Jogiste Lee E. Frelich Diana Laarmann Floortje Vodde Endijs Baders Janis Donis Aris Jansons Ahto Kangur Henn Korjus Kajar Köster Jürgen Kusmin Timo Kuuluvainen Vitas Marozas Marek Metslaid Sandra Metslaid Olga Polyachenko Anneli Poska Sille Rebane John A. StanturfSammendrag
In the Baltic States region, anthropogenic disturbances at different temporal and spatial scales mostly determine dynamics and development phases of forest ecosystems. We reviewed the state and condition of hemiboreal forests of the Baltic States region and analyzed species composition of recently established and permanent forest (PF). Agricultural deforestation and spontaneous or artificial conversion back to forest is a scenario leading to ecosystems designated as recent forest (RF, age up to two hundred years). Permanent forest (PF) was defined as areas with no records of agricultural activity during the last 200 yr, including mostly forests managed by traditional even-aged (clear-cut) silviculture and salvage after natural disturbances. We hypothesized that RF would have distinctive composition, with higher dominance by hardwoods (e.g., aspen and birch), compared to PF. Ordination revealed divergence in the RF stands; about half had the hypothesized composition distinct from PF, with a tight cluster of stands in the part of the ordination space with high hardwood dominance, while the remaining RF stands were scattered throughout the ordination space occupied by PF with highly variable species composition. Planting of conifers, variability in site quality, and variability in spatial proximity to PF with relatively natural ecosystem legacies likely explained the variable compositions of this latter group of RF. We positioned the observations of RF in a classic quantification of site type conditions (based on Estonian forest vegetation survey previously carried out by L~ohmus), which indicated that RF was more likely to occur on areas of higher soil fertility (in ordination space). Climatic and anthropogenic changes to RF create complex dynamic trends that are difficult to project into the future. Further research in tracing land use changes (using pollen analysis and documented evidence) should be utilized to refine the conceptual framework of ecosystem legacy and memory. Occurrence and frequency of deforestation and its characteristics as a novel disturbance regime are of particular interest.