Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Til dokument

Sammendrag

The climate is an aggregate of the mean and variability of a range of meteorological variables, notably temperature (T) and precipitation (P). While the impacts of an increase in global mean surface temperature (GMST) are commonly quantified through changes in regional means and extreme value distributions, a concurrent shift in the shapes of the distributions of daily T and P is arguably equally important. Here, we employ a 30‐member ensemble of coupled climate model simulations (CESM1 LENS) to consistently quantify the changes of regionally and seasonally resolved probability density functions of daily T and P as function of GMST. Focusing on aggregate regions covering both populated and rural zones, we identify large regional and seasonal diversity in the probability density functions and quantify where CESM1 projects the most noticeable changes compared to the preindustrial era. As global temperature increases, Europe and the United States are projected to see a rapid reduction in wintertime cold days, and East Asia to experience a strong increase in intense summertime precipitation. Southern Africa may see a shift to a more intrinsically variable climate but with little change in mean properties. The sensitivities of Arctic and African intrinsic variability to GMST are found to be particularly high. Our results highlight the need to further quantify future changes to daily temperature and precipitation distributions as an integral part of preparing for the societal and ecological impacts of climate change and show how large ensemble simulations can be a useful tool for such research.

Til dokument

Sammendrag

There is growing international interest in better managing soils to increase soil organic carbon (SOC) content to contribute to climate change mitigation, to enhance resilience to climate change and to underpin food security, through initiatives such as international ‘4p1000’ initiative and the FAO's Global assessment of SOC sequestration potential (GSOCseq) programme. Since SOC content of soils cannot be easily measured, a key barrier to implementing programmes to increase SOC at large scale, is the need for credible and reliable measurement/monitoring, reporting and verification (MRV) platforms, both for national reporting and for emissions trading. Without such platforms, investments could be considered risky. In this paper, we review methods and challenges of measuring SOC change directly in soils, before examining some recent novel developments that show promise for quantifying SOC. We describe how repeat soil surveys are used to estimate changes in SOC over time, and how long‐term experiments and space‐for‐time substitution sites can serve as sources of knowledge and can be used to test models, and as potential benchmark sites in global frameworks to estimate SOC change. We briefly consider models that can be used to simulate and project change in SOC and examine the MRV platforms for SOC change already in use in various countries/regions. In the final section, we bring together the various components described in this review, to describe a new vision for a global framework for MRV of SOC change, to support national and international initiatives seeking to effect change in the way we manage our soils.

Sammendrag

OBJECTIVES • Gain a better understanding of the fate of pesticides in the environment by also screening and detecting their metabolites • Predict and detect pesticide metabolites in soils using high resolution accurate mass (HRAM) tools; Thermo Q Exactive orbitrap and Compound DiscovererTM software. HIGHLIGHTS • We present in silico metabolism simulation to predict fungicide metabolites in soil • We present a screening method for 800 pesticides and metabolites in soil and food, exemplified with soil samples from strawberry field degradation studies (including fluopyram, boscalid and pyraclostrobin and others) • We address the lack of molecular formulas for known metabolites in current databases as an obstacle in establishing HRAM screening methods