Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

LoRa-WAN sensors were used to compare methods for determining walking distances by grazing cattle in near real-time. The accuracy of relying on a global positioning system (GPS) alone or in combination with motion data derived from triaxial accelerometers was compared using stationary control trackers (Control) placed in fixed field locations (n=6) or vs. trackers (Animal) mounted on cows (n=6) grazing on pasture at the New Mexico State University’s Clayton Livestock Research Center. Trackers communicated motion data at 1-minute intervals and GPS positions at 15-minute intervals for seven days. Daily distance walked was determined using: 1) raw GPS data (RawDist), 2) data with erroneous GPS locations removed (CorrectedDist), or 3) data with erroneous GPS locations removed and with GPS data associated with the static state excluded (CorrectedDist_Act). Distances were analyzed via one-way ANOVA to compare Control vs. Animal deployment effects. No difference (P=0.43) in walking distance was detected between Control vs. Animal for RawDist. However, distances calculated for CorrectedDist differed (P<0.01) between the two tracker deployments. Due to the random error of GPS measurements, CorrectedDist for stationary devices differed (P=0.01) from zero. The walking distance calculated by CorrectedDist_Act differed (P<0.01) between Control vs. Animal trackers, with distances for Control trackers not differing (P=0.44) from zero. The fusion of GPS and accelerometer data was a more suitable method for calculating walking distance by grazing cattle. This result may highlight the value of combining more than one source of independent sensor data in Precision Livestock Farming applications.

Sammendrag

The fungus Neonectria ditissima causes Fruit Tree Canker on apple and pear. In the past years the disease has become a threat for Swedish and Northern European apple production since devastating outbreaks destroy large numbers of trees. To date, no complete genetic resistance to N. ditissima is known in apple but genotypes (scion cultivars and rootstocks) differ greatly in their level of partial resistance. Furthermore, the degree of susceptibility of a scion cultivar may be influenced by the rootstock it is grafted to. Thus, we aimed to improve our understanding of genetically determined differences in resistance among rootstocks and clarify cultivar/rootstock interactions with regards to canker resistance. For that, we evaluated differences in resistance to fruit tree canker in 24 rootstocks (including two M9 clones). We also evaluated differences in resistance of four most widely grown in Sweden scion cultivars grafted to four common rootstocks differing in vigour. The new knowledge will be useful for growers and breeders to minimize canker damages, prevent loss of the fruit-bearing surface in the orchards, save time and money for the growers.