Til dokument

Sammendrag

In Norway, cover crops were introduced to prevent loss of nitrogen and phosphorous from fields to waterways. Today, cover crops are also used to restore soil organic matter and improve soil health. Yet, the direction and magnitude of these effects are variable, and little is known about the persistence of the C derived from the cover crops in the soil. In the CAPTURE project, we evaluated the soil C sequestration potential from different cover crops used in the main cereal production areas in Norway. To do so, we used pulse labelling with 13C (CO2) to label four different cover crop species Italian ryegrass, phacelia, oilseed radish and summer vetch through their growing period. Cover crops were grown in a monoculture to enable the labelling. The results of the first year of the experiment show that cover crops produced 10- 14 Mg ha-1 above ground biomass, corresponding to 4-6 Mg C ha-1. At the end of the growing season, 3-5% of cover crop C was found in the soil particulate organic matter (POM) fraction and 2-4% in the soil mineral organic matter fraction (MAOM). In the following years, the fate of C derived from the cover crops in the soil will be determined. Furthermore, the soil C sequestration of the different cover crops will be scaled to barley plots in the same experiment, to which cover crops had been undersown in spring or summer. In these plots, N2O emissions have been measured through the whole year. The greenhouse gas trade-offs of cover crops in Norwegian cereal production will be estimated.

Til dokument

Sammendrag

The lack of high-grade scandium (Sc) ores and recovery strategies has stimulated research on the exploitation of non-ore-related secondary sources that have great potential to safeguard the critical raw materials supply of the EU’s economy. Waste materials may satisfy the growing global Sc demand, specifically residues from titanium dioxide (TiO2) production. New technologies are being developed for the recovery of Sc from such residues; however, the possible environmental impacts of intermediary products and residues are usually not considered. In order to provide a comprehensive ecotoxicity characterisation of the wastes and intermediate residues resulting from one promising new technology, acid-resistant nanofiltration (arNF), a waste-specific ecotoxicity toolkit was established. Three ecotoxicity assays were selected with specific test parameters providing the most diverse outcome for toxicity characterisation at different trophic levels: Aliivibrio fischeri (bacteria) bioluminescence inhibition (30 min exposure), Daphnia magna (crustacean) lethality and immobilisation (24 h exposure) and Lemna minor (plant) growth inhibition with determination of the frond number (7 d exposure). According to our results, the environmental impact of the generated intermediate and final residues on the aquatic ecosystem was mitigated by the consecutive steps of the filtration methods applied. High and statistically significant toxicity attenuation was achieved according to each test organism: toxicity was lowered based on EC20 values, according to the A. fischeri bioluminescence inhibition assay (by 97%), D. magna lethality (by 99%) and L. minor frond number (by 100%), respectively, after the final filtration step, nanofiltration, in comparison to the original waste. Our results underline the importance of assessing chemical technologies’ ecotoxicological and environmental impacts with easy-to-apply and cost-effective test methods to showcase the best available technologies.

Til dokument

Sammendrag

Bauxite residue (red mud) is considered an extremely alkaline and salty environment for the biota. We present the first attempt to isolate, identify and characterise microbes from Hungarian bauxite residues. Four identified bacterial strains belonged to the Bacilli class, one each to the Actinomycetia, Gammaproteobacteria, and Betaproteobacteria classes, and two to the Alphaproteobacteria class. All three identified fungi strains belonged to the Ascomycota division. Most strains tolerated pH 8–10 and salt content at 5–7% NaCl concentration. Alkalihalobacillus pseudofirmus BRHUB7 and Robertmurraya beringensis BRHUB9 can be considered halophilic and alkalitolerant. Priestia aryabhattai BRHUB2, Penicillium chrysogenum BRHUF1 and Aspergillus sp. BRHUF2 are halo- and alkalitolerant strains. Most strains produced siderophores and extracellular polymeric substances, could mobilise phosphorous, and were cellulose degraders. These strains and their enzymes are possible candidates for biotechnological applications in processes requiring extreme conditions, e.g. bioleaching of critical raw materials and rehabilitation of alkaline waste deposits.

Til dokument

Sammendrag

Sorption of nutrients such as NH4+ is often quoted as a critical property of biochar, explaining its value as a soil amendment and a filter material. However, published values for NH4+ sorption to biochar vary by more than 3 orders of magnitude, without consensus as to the source of this variability. This lack of understanding greatly limits our ability to use quantitative sorption measurements towards product design. Here, our objective was to conduct a quantitative analysis of the sources of variability, and infer which biochar traits are more favourable to high sorption capacity. To do so, we conducted a standardized remodelling exercise of published batch sorption studies using Langmuir sorption isotherm. We excluded studies presenting datasets that either could not be reconciled with the standard Langmuir sorption isotherm or generated clear outliers. Our analysis indicates that the magnitude of sorption capacity of unmodified biochar for NH4+ is lower than previously reported, with a median of 4.2 mg NH4+ g−1 and a maximum reported sorption capacity of 22.8 mg NH4+ g−1. Activation resulted in a significant relative improvement in sorption capacity, but absolute improvements remain modest, with a maximum reported sorption of 27.56 mg NH4+ g−1 for an activated biochar. Methodology appeared to substantially impact sorption estimates, especially practices such as pH control of batch sorption solution and ash removal. Our results highlight some significant challenges in the quantification of NH4+ sorption by biochar and our curated data set provides a potentially valuable scale against which future estimates can be assessed.