Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2006

Til dokument

Sammendrag

We have made and partially sequenced two subtracted cDNA libraries, one representing genes predominantly expressed in a tree from an early-flushing family of Norway spruce (early-flushing library; EFL) and the second from a late flushing family (late flushing library; LFL), during 4 weeks before bud burst. In the EFL, expressed sequence tags (ESTs) encoding proteins of the photosynthetic apparatus and energy metabolism and proteins related to stress (abiotic and biotic) and senescence were abundant. ESTs encoding metallothionein-like and histone proteins as well as transcription factors were abundant in the LFL. We used quantitative real-time reverse transcription polymerase chain reaction to study the expression patterns of 25 chosen genes and observed that the highest levels of activity for most genes were present when plants were still ecodormant. The results indicate that the late flushing is not a result of a delay in gene activity, but is rather associated with an active transcriptional process. Accordingly, certain metabolic processes may be turned on in order to prevent premature flushing. We discuss the putative role of the studied genes in regulation of bud burst timing. Among the candidate genes found, the most interesting ones were the DNA-binding proteins, water-stress- related genes and metallothioneins. Expression patterns of some genes involved in chemical modification of DNA and histones indicate that epigenetic factors are involved in the timing of bud burst. In the obtained transcriptomes, we could not find genes commonly believed to be involved in dormancy and bud set regulation (PHY, CRY, ABI etc.) in angiosperm plants.

Sammendrag

Results from a literature review on pinewood ecology, silviculture, genetics, aspects of history and forest resources of Scots pine (Pinus sylvestris L.) in western Norway are presented. The pinewoods cover 40 per cent of the forested land, 0.31 million ha. During the last 75 years, the area has increased by 17 per cent and the growing stock has risen from 10 to 34 million m3. The impact of man in previous times was very marked, and has had a significant influence on the present forest conditions. The pronounced climatic gradients mixed with the topographic variation - from the coastal plains via the fjord systems to the high mountains - is reflected in rather steep gradients in the pine forest vegetation. Various floristic elements can be distinguished, from oceanic via the suboceanic in the outer islands to the thermophytic, boreonemoral and boreal elements in the inner fjord districts and valleys. The introduction of spruce (Picea spp.) plantations on 10-15 per cent of former native pine forests has not negatively affected the bird fauna at the landscape scale. Although not particular species rich, the pine forests harbour species usually not found in other forest types. So far, most work in the field of silviculture and forest ecology in the pinewoods of West Norway has been in the form of case studies. Implications of the results for forestry in the region are briefly discussed.

2005

Sammendrag

Barlind (Taxus baccata) og kristtorn (Ilex aquifolium) har en lang og mangslungen felles historie med oss mennesker i nord. Nedtegnelser om artene finnes allerede i norrøn mytologi, og mannedrap, kreftbekjempelse og dekor er stikkord som vitner om variert bruk. Den store betydningen både før og nå, gjenspeiles ikke i utbredelsen som for begge artene er begrenset til små arealer langs deler av kysten i Sør-Norge. Artene er derfor fremmed for mange som ellers kjenner skogens trær.

Sammendrag

Impact assessment for a proposed LNG plant has been carried out for three potential locations in northwest Russia. The impact from the plant is small, and the critical loads for terrestrial ecosystems and aquatic ecosystems will not be exceeded at any of the 3 locations.