Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Umbrisol er selvdrenert jordsmonn med over seks prosent organisk materiale i overflatesjiktet. Jorda er utviklet fra næringsfattig opphavsmateriale.

Til dokument

Sammendrag

Reindeer in the Arctic seasonally suppress daily circadian patterns of behavior present in most animals. In humans and mice, even when all daily behavioral and environmental influences are artificially suppressed, robust endogenous rhythms of metabolism governed by the circadian clock persist and are essential to health. Disrupted rhythms foster metabolic disorders and weight gain. To understand circadian metabolic organization in reindeer, we performed behavioral measurements and untargeted metabolomics from blood plasma samples taken from Eurasian tundra reindeer (Rangifer tarandus tarandus) across 24 h at 2-h intervals in four seasons. Our study confirmed the absence of circadian rhythms of behavior under constant darkness in the Arctic winter and constant daylight in the Arctic summer, as reported by others.1 We detected and measured the intensity of 893 metabolic features in all plasma samples using untargeted ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS). A core group of metabolites (66/893 metabolic features) consistently displayed 24-h rhythmicity. Most metabolites displayed a robust 24-h rhythm in winter and spring but were arrhythmic in summer and fall. Half of all measured metabolites displayed ultradian sleep-wake dependence in summer. Irrespective of the arrhythmic behavior, metabolism is rhythmic (24 h) in seasons of low food availability, potentially favoring energy efficiency. In seasons of food abundance, 24-h rhythmicity in metabolism is drastically reduced, again irrespective of behavioral rhythms, potentially fostering weight gain.

Sammendrag

Forest tree seed orchards are artificial populations of genetically superior individuals that play a crucial role in the production of high-quality seeds for reforestation and afforestation programs worldwide. In the pre-genetic-marker era, seed orchards were assumed to act as closed, panmictic populations with equal reproductive success among parents and with no gene flow from external pollen sources. Meeting these assumptions would ensure that the genetic gain attained by breeding would be efficiently transmitted to the next generation, i.e., into seed orchard crops. Many studies published to date have shown that parental reproductive success may be highly variable and that gene flow from undesired pollen sources, a.k.a. pollen contamination, can be substantial. Since the realized genetic gain can be considerably reduced, it is important to monitor mating patterns in seed orchards and thereby control the genetic quality (gain and diversity) of their crops. With the development of genetic markers, the theoretical assumptions as well as the efficiency of measures proposed to enhance desired crosses and reduce pollen contamination in seed orchards could be verified. First attempts to unravel mating patterns and quantify pollen contamination in seed orchards date back to the late 1970s when allozyme markers were introduced. Allozymes remained in use for over two decades, but due to their low resolution, they were gradually replaced with much more powerful microsatellites (SSRs), which, along with the rapid evolution of various statistical approaches, were capable of providing a much more detailed picture of seed orchards’ mating dynamics through pedigree reconstruction. Recently, SNP arrays that have been (and are being) developed for a number of commercially important forest tree species make it possible to affordably and rapidly screen seed orchard seed lots and evaluate the orchards’ genetic efficiency.