
The Centre for Precision Agriculture is located in NIBIOs research station Apelsvoll in Østre Toten municipality. The centre was established in 2016. Its purpose is to contribute to resource-efficient and sustainable agriculture by shortening the path from the development of new technology to its practical benefit for farmers.
The main goal of precision agriculture (PA) is to optimize crop yields and quality while taking care of the natural environment, achieving both economic and environmental benefits.
Precision agriculture is a production strategy based on the collection, processing, and analysis of temporal, spatial, and plantspecific data. This information is combined with other knowledge about the production system to tailor actions to identified variations, improving resource efficiency, productivity, quality, profitability, and sustainability. In short, precision agriculture involves using new technology to adjust the treatment of soil and crops based on needs, which often vary significantly within the same field.
Traditionally, entire fields are treated uniformly based on what is assumed to be appropriate on average. In precision agriculture, however, inputs such as fertilizer, pesticides, and lime are adjusted based on site-specific needs. These needs are mapped by integrating information from many sources, where sensors, cameras, and global navigation satellite systems (GNSS) play a central role. Such equipment can be mounted on tractors, robots, drones, or satellites.
Our team of researchers and engineers at the Center for Precision Agriculture focuses on developing new technologies and methodologies related to remote sensing of plant characteristics, automating various agronomic processes, and disseminating data and methods.
We conduct research on crops such as grains, berries, grasslands, and potatoes, and develop methods to extract information about plants' nitrogen content, water status, and health conditions. Additionally, we develop models to predict yields and product quality relatively early in the growing season.
We develop and test technological solutions for both today's and future precision agriculture. Our R&D activities are concentrated around the following topics:
We collaborate with both national and international partners, covering a wide range—from end-users and key market players in agriculture to technology companies. Furthermore, we maintain extensive collaborations with research communities worldwide.
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 7.9.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
No abstract has been registered
A 3.3 ha field experiment with tile-drained plots was established in 1988/89 at the Research Centre of the Arable Crops Division in central southeast Norway (60°42"N, 10°51"E, altitude 250 m). Six cropping systems, each with 2 replicates, are practiced on twelve 1.8 ha blocks, arranged in a randomised complete block design. During the first 10 years, the experiment provided data for many studies covering a wide range of topics. Some adjustments were made to the experimental treatments in 2000. The experiment now comprises three arable systems ("old-fashioned" and "modern" conventional arable cropping, and organic arable cropping with green manure as its only nutrient input) and three mixed dairy systems ("modern" conventional production of both arable and forage crops with 50% grass-clover ley, and organic production of both arable and forage crops with either 50 or 75% grass-clover ley in the rotation, all with farmyard manure). In this study, yields and N leaching/runoff losses are presented for the six agrohydrological years (May-April) 2001-2006. Results are discussed in relation to N use efficiency and sustainability of the systems.
A major obstacle to patch spraying of broad-leaved weeds in cereals is a cost-effective method to assess within-field heterogeneity of the weed population. One method could be a camera mounted in front of the spraying vehicle, online image analysis, and field sprayer shifting between "on" and "off" as the predefined weed damage threshold level is reached. Because such a camera will capture a very limited area (
No abstract has been registered
Spring barley was grown for four years (2001-2004) in field trials consisting of 20 replicate blocks at two sites on morainic soil in central SE Norway. Five N level treatments were used within each block: 0, 60, 90, 120 and 150 kg N ha-1. Regression analyses showed that a selection of soil properties could explain 55-96% of the spatial yield variation and 18-91% of the variation in yield response to N. A variable-rate strategy, accounting for variation between both years and replicate blocks (VRs+t), was compared with a strategy, which accounted for variation between years, and a uniform strategy, which did not account for any variation. The VRs+t strategy had the highest potential yield, apparent fertilizer recovery and net revenue (yield value minus N cost). Using the VRs+t strategy, even at sub-optimal N rates, would increase the profit of barley cropping as long as the increase in net revenue was at least 24 and 42% of the estimated potentials, respectively.
Apparent soil electrical conductivity (ECa) is a promising indicator for important soil physical and chemical properties. In this paper the method of measuring ECa to characterize within-field variability was tested on a clay soil in S Norway. A field survey was conducted with the Geonics EM38 on a 15 ha field, and 223 soil samples were taken. Most of the measured variables of the topsoil, except P-AL, total N and organic C, were significantly (p£0.05) correlated with ECa. Topsoil Mg-AL alone accounted for 75% of the variation in ECa. Subsoil pH and clay, silt and coarse sand contents were correlated with ECa. The clay content at both depths accounted for 63% of the variation in ECa. After grouping the data on the basis of measured ECa into classes with intervals of 2 mS/m, there were significant differences in soil properties (combinations of clay content, Mg-AL and K-HNO3) between 7 out of 9 classes.
Two hand-held spectro-radiometers were used to measure canopy reflectance from winter wheat and spring barley in two ongoing fertilizer experiments. Relations between measurements made in June and plant N content (June), above-ground biomass (June), yields and grain protein content (at harvest in August) were studied. For winter wheat, regression models predicted up to 55, 89, 88 and 28% of the variations in N-content, biomass, yields and protein content, respectively. For spring barley the corresponding predictions were 87, 96, 87 and 22%.
.Precision agriculture (PA) may be defined as using the best available technologies to tailor soil and crop management to fit the specific conditions found within an agricultural field or tract (Johannsen, 2001). Knowledge about soil variation within fields is thus a prerequisite for optimum PA. The use of sensors which measure electrical conductivity (EC) has been introduced as a promising way of mapping within-field variation in soil properties. In this paper we present relationships found between EC and both clay content and ignition loss (SOM) of some morainic loam soils in SE Norway. Measurements of EC at Møystad (60°47"N, 11°10"E, altitude ca.150 m) correlated well with clay content. Despite the rather narrow range of clay content at Møystad (11-17%), EC measurements accounted for about 70% of the variation. The use of EM38 in the horizontal position gave the best prediction in the upper two layers, whereas measurements in the vertical position fitted best to data from the deepest layer (40-60 cm). This is reasonable, since the instrument has its deepest range in the vertical position. Ignition loss in the upper layer was 5-8% at Møystad. There was no significant relation between EC and ignition loss in the upper layer, when EC was measured with EM38 in the vertical position. When EC was measured horizontally, about 24% of the variation in ignition loss was reflected by the EC of the soil. One should, however, take into account that ignition loss and clay content were positively correlated with each other (r=0.382), so that the result may in fact have been due to variation in clay content. We also measured EC at Kise Research Station (60°46"N, 10°48"E, altitude ca.130 m), where we selected five points across a field with a particularly large gradient in ignition loss. Here EC correlated positively with clay content, but this was not statistically significant (R2=0.576, p=0.137). With ignition loss, however, EC showed a strong positive correlation (R2=0.878, p=0.019). Inclusion of both clay content and ignition loss in a two-predictor regression model, with EC as the dependent variable, showed that the conductivity measurements depended almost completely on clay content and ignition loss for the selected points at Kise (R2=0.981, p=0.019). However, the predictors were positively intercorrelated here as well (r=0.517), which may make the statistical approach questionable. We also admit that the number of data points was very low. Nevertheless, the results clearly illustrate the potential of EC measurements for mapping soil variation.
.Dense datasets are required to describe within field variation precisely. Sensor techniques appear to be promising to reduce labour, time and costs compared to traditional methods of sampling and analysis. Relationships found between soil apparent electrical conductivity (ECa) and available N, pH and soil moisture under spring barley on morainic loam in SE Norway are presented. Measurements were conducted in a 160 m long field trial, established in barley in 2002 at Kise Research Station (60°46"N, 10°48"E, 130 masl). The trial had 20 replicate blocks containing five N-level treatments (0, 60, 90, 120 and 150 kg N ha-1, given as calcium ammonium nitrate). Each plot was 1.5 x 8 m. Soil samples were taken from all five treatments in three selected blocks at 0-15 cm depth, shortly before fertilizing/sowing (10.05.02) and then at two week intervals until the beginning of July (23.05, 06.06, 20.06 and 04.07). Analyses comprised nitrate-N, ammonium-N, pH and water content. At each sampling, ECa was measured in the same plots, using a magnetic dipole soil conductivity meter (EM38, Geonics Ltd., Canada). The device was operated manually in both horizontal (EMh) and vertical (EMv) modes. Linear regressions showed that both EMh and EMv correlated well with the measured variables. All the relations were significant (p
Two trials have been established to study within-field variation in responses to N fertilizer. Preliminary results showed a close relation between soil organic matter and the amount of mineralised N in soil in spring. Both trials displayed considerable variation in responses to N fertilizer, even thought the yields increased up to the highest N level used. On the basis of responses in individual replicates, it was estimated that varying fertilizer levels across the field would have been positive in one of the trials. The studies will be continued to find out whether the pattern of variation remains the same, and to study the role of various soil factors.
Formålet med prosjektet er å ta i bruk satellitt-data fra Copernicus programmet for å utvikle rutiner og verktøy rettet inn mot jordbruksfaglige problemstillinger, og gjennom dette bidra med informasjon og råd til relevante aktører (bønder, rådgivere, jordbruksnæringa, kommuner, politikere og utdanningsinstitusjoner). Prosjektet skal dermed bidra til å forbedre dagens dyrkningspraksis, som gjennom en bedre utnyttelse av innsatsfaktorer som gjødsel og fôr også bidrar til å redusere klimaavtrykket til det norske jordbruket.
I PRESIS, et nytt femårig samarbeidsprosjekt, skal NIBIO være med å videreutvikle teknologiske løsninger for enda bedre presisjonsjordbruk, og samtidig sørge for at løsningene kommer ut i praksis til gårdene.
Forbruket av matpoteter er i senere tid dreid mot en økt andel små matpoteter, såkalt delikatessepoteter. Hovedmålet for prosjektet er å utvikle ny kunnskap, teknologi og verktøy for økt presisjon i dyrking og lagring av slike småpoteter. Formålet er at markedet for småpoteter i størst mulig grad skal kunne dekkes av norske småpoteter med rett kvalitet. For at produksjonen skal være lønnsom må antall knoller per plante økes, knollene må ha rett størrelse og være mest mulig jevnstore, og lagringsstrategiene må tilpasses poteter som er små og pakkes tettere i kassene.
The Sinograin III project’s overall objective is to contribute to the UN SDGs by widely implementing precision agriculture technologies and application of “waste-to-value” biochar products to achieve sustainable food production with minimized GHG emission, improve soil fertility and promote green growth/zero waste in modern agriculture in China.
Efficient measures for weed control and similar challenges are vital to avoid crop loss in agriculture. National supply of food, feed and other agricultural products depends on each farmer’s success managing their fields and orchards. The recent loss of the herbicide diquat, and the potential ban on glyphosate, - both important tools for farmers -, raise a demand for new measures for vegetation control. Efficient alternatives to herbicides are also important tools in Integrated Pest Management (IPM). Norwegian growers need to document compliance to IPM since 2015 to ensure minimum hazards to health and environment from pesticide use.
SolarFarm - En systemstudie av hvordan solstrøm produsert på gårdsnivå kan drive elektriske og delvis selvstyrte farkoster i et presisjonsjordbruk med reduserte utslipp av klimagasser
IMPRESS - Økt presisjon og målretting i gjødsling og avlingsfremmende tiltak i grovfôrproduksjonen Hovedmålet med prosjektet er å heve avling og kvalitet i norsk grovfôrproduksjon gjennom å utvikle og tilpasse presisjonsteknologi, modeller og tiltak for stedsspesifikk bruk av innsatsfaktorer, og for identifikasjon og forbedring av lavtytende områder i enga
The Quality Wheat project aims to increase Norwegian wheat quality to achieve better utilization of Norwegian wheat, and thus meet the national goals of increased food production.