Hugh Riley

Research Scientist (OAP Agreement)

(+47) 936 13 215
hugh.riley@nibio.no

Place
Apelsvoll

Visiting address
Nylinna 226, 2849 Kapp

To document

Abstract

Renewable energy in the form of biogas can be produced by anaerobic digestion (AD) of animal manure. However, there is still a lack of knowledge on the long-term effects of AD-treated manure on soil characteristics and crop productivity, compared with untreated manure. A field experiment was established in a perennial grass-clover ley in 2011 to study the effects on important soil and crop characteristics when the slurry from a herd of organically managed dairy cows is anaerobically digested. While the rate of manure application affected soil concentrations of extractable nutrients and pH, these variables were unaffected by AD. Soil organic matter (SOM) concentrations decreased in all plots and faster on the plots with high intrinsic SOM. The decrease was similar with application of untreated (non-digested) slurry (US) and anaerobically digested slurry (ADS), and it was not affected by application rates. The general decline may be explained by the initial high SOM content, the long-term effect of drainage, and higher temperatures with climatic change. US and ADS gave similar yields of grass-clover ley (2 cuts/year) and green fodder, on average 0.79 and 0.40 kg DM m−2, respectively. Clover yield was similar in manured treatments and the non-fertilized control. With respect to crop yields and chemical soil characteristics, long-term (10 years) effects of AD in an organic dairy cow farming system seem to be minor. The benefits of extracting energy from the slurry did not compromise grassland productivity or soil quality in the long term.

Abstract

Intensification and specialization of farming systems in Europe and elsewhere has resulted in poor crop rotations, with low plant and animal diversity. This has resulted in more uniform landscapes, soil carbon loss and low efficiency in nutrient cycling, particularly in regions dominated by annual crops. Inclusion of ley in crop rotations is expected to increase soil organic carbon (SOC) stocks, nitrogen availability and improve soil physical properties. The effect of ley-arable rotations versus continuous annual cropping on soil quality, soil organic carbon and soil biology was assessed by summarizing and discussing results from publications from long-term experiments in Norway and Sweden. These studies support the hypotheses that the inclusion of leys in crop rotations promotes soil fertility and carbon sequestration in Northern Europe, supplies nutrients to subsequent crops and improves soil physical properties. However, one or two years of ley in rotations may not be enough for maintaining SOC and good soil structure over time. For keeping the relatively high SOC concentrations occurring at many sites in Northern Europe, the proportion of ley in rotation should be at least 50%.

To document

Abstract

Frequent occurrences of high levels of Fusarium mycotoxins have been recorded in Norwegian oat grain. To elucidate the influence of tillage operations on the development of Fusarium and mycotoxins in oat grain, we conducted tillage trials with continuous oats at two locations in southeast Norway. We have previously presented the content of Fusarium DNA detected in straw residues and air samples from these fields. Grain harvested from ploughed plots had lower levels of Fusarium langsethiae DNA and HT-2 and T-2 toxins (HT2 + T2) compared to grain from harrowed plots. Our results indicate that the risk of F. langsethiae and HT2 + T2 contamination of oats is reduced with increasing tillage intensity. No distinct influence of tillage on the DNA concentration of Fusarium graminearum and Fusarium avenaceum in the harvested grain was observed. In contrast to F. graminearum and F. avenaceum, only limited contents of F. langsethiae DNA were observed in straw residues and air samples. Still, considerable concentrations of F. langsethiae DNA and HT2 + T2 were recorded in oat grain harvested from these fields. We speculate that the life cycle of F. langsethiae differs from those of F. graminearum and F. avenaceum with regard to survival, inoculum production and dispersal.

Abstract

Soil organic carbon (SOC) was studied at 0–45 cm depth after 28 years of cropping with arable and mixed dairy rotations on a soil with an initial SOC level of 2.6% at 0–30 cm. Measurements included both carbon concentration (SOC%) and soil bulk density (BD). Gross C input was calculated from yields. Averaged over all systems, topsoil SOC% declined significantly (−0.20% at 0–15 cm, p = 0.04, −0.39% at 15–30 cm, p = 0.05), but changed little at 30–45 cm (+0.11%, p = 0.15). Declines in topsoil SOC% tended to be greater in arable systems than in mixed dairy systems. Changes in BD were negatively related to those in SOC%, emphasizing the need to measure both when assessing SOC stocks. The overall SOC mass at 0–45 cm declined significantly from 98 to 89 Mg ha−1, representing a loss of 0.3% yr−1 of the initial SOC. Variability within systems was high, but arable cropping showed tendencies of high SOC losses, whilst SOC stocks appeared to be little changed in conventional mixed dairy with 50% ley and organic mixed dairy with 75% ley. The changes were related to the level of C input. Mean C input was 22% higher in mixed dairy than in arable systems.

To document

Abstract

Mechanistic models are useful tools for understanding and taking account of the complex, dynamic processes such as carbon (C) and nitrogen (N) turnover in soil and crop growth. In this study, the EU-Rotate_N model was first calibrated with measured C and N mineralization from nine potential fertilizer resources decomposing at controlled soil temperature and moisture. The materials included seaweeds, wastes from the food industry, food waste anaerobically digested for biogas production, and animal manure. Then the model’s ability to predict soil and crop data in a field trial with broccoli and potato was evaluated. Except for seaweed, up to 68% of added C and 54–86% of added N was mineralized within 60 days under controlled conditions. The organic resources fell into three groups: seaweed, high-N industrial wastes, and materials with high initial content of mineral N. EU-Rotate_N was successfully calibrated for the materials of industrial origin, whereas seaweeds, anaerobically digested food waste and sheep manure were challenging. The model satisfactorily predicted dry matter (DM) and N contents (root mean square; RMSE: 0.11–0.32) of the above-ground part of broccoli fertilized with anaerobically digested food waste, shrimp shell pellets, sheep manure and mineral fertilizers but not algal meal. After adjusting critical %N for optimum growth, potato DM and N contents were also predicted quite well (RMSE: 0.08–0.44). In conclusion, the model can be used as a learning and decision support tool when using organic materials as N fertilizer, preferably in combination with other models and information from the literature.

To document

Abstract

Several factors may define storability in root crops. In the following paper, preliminary results are presented from two experiments performed to test factors affecting storage quality of carrot. The study have focused on 1) soil loosening/soil compaction and 2) different cultivars of carrot and root age considered by the length of the growing period. The results so far indicate that the soil compaction had few effects on storability of carrot, but did seem to negatively affect the length of the carrot. Soil loosening reduced the occurrence of liquorice rot caused by Mycocentrospora acerina. Large differences were found in storability between the ten tested carrot cultivars and length of growing period tended to be negatively correlated to storability. We conclude that a number of precautions in carrot production may increase storability and thus economic performance.

To document

Abstract

The main objective was to evaluate to what extent subsoil compaction on an arable clay soil (Stagnosol (Drainic)) may be alleviated after 5 years under the climate conditions in South-East Norway. Therefore, field plots which had been ploughed and under minimum tillage were compacted through wheel impact (10x) with a 6.6 Mg wheel load. Samples were taken from the ‘compacted’ and ‘non-compacted reference’ treatments at depths of 40 and 60 cm both before and directly after compaction and again 5 years later. The soil physical parameters revealed that pre-compression stress, bulk density, air capacity, air conductivity and saturated hydraulic conductivity at depths of 40 and 60 cm were impaired by compaction, especially under ploughed. After 5 years, bulk density and pre-compression stress remained almost unchanged, while air capacity, air conductivity and saturated hydraulic conductivity had increased at both the 40 and 60 cm depth on both plots as compared to the compacted state and to R for the most part, indicating the recovery of the soil structure in the subsoil. The compaction status evaluated by the ‘compaction verification tool’ indicates the relative reduction of ‘harmful soil compaction’ (after wheel impact) with a change towards ‘slightly harmful compaction’ for the most part with an as yet limited saturated hydraulic conductivity at both depths after 5 years.

Abstract

Perennial versus short term (<3 years) grass vegetation cover is likely to have considerable differences in root density and thus carbon (C) inputs to soil. Carbon inputs are important to maintain soil organic carbon (SOC) and may even increase it. In Norway and Scandinavia, the SOC content in soil is often higher than in other parts of Europe, due to the cold climate and high precipitation (i.e. slower turnover rates for soil organic matter) and a dominance of animal production systems with a large amount of grassland. Here we aimed to evaluate differences in SOC content, down to 60 cm depth, of a long-term grassland (without ploughing for decades) and a short-term grassland (frequently renewed by ploughing) under contrasting climate, soil and management conditions. Quantification of SOC was carried out on three long-term experimental sites on an extended latitude gradient in West and North Norway. The samples were taken from 4 depth increments (0-5, 5-20, 20-40 and 40-60 cm) in treatments that have not been ploughed for at least 43 years, and in treatments that were ploughed every third year until 2011. Preliminary results suggest that there is no significant difference in SOC storage down to 60 cm between long-term and short-term grasslands.

Abstract

To mitigate the risk of erosion and nutrient runoff, reduced tillage has become more prevalent in Norway. Within within recent decades, there have been some years with relatively high occurrence of Fusarium head blight and mycotoxins in Norwegian cereal grain. This is thought to have been caused by an increased inoculum potential (IP) of Fusarium spp. due to larger amount of crop residues remaining on the soil surface, in combination with weather conditions promoting fungal growth and infection of cereal plants. The objective of this work was to elucidate the influence of different tillage practices on the IP of Fusarium spp. and the subsequent Fusarium-infection and mycotoxin contamination of spring wheat grain at harvest. Tillage trials were conducted at two locations in southeast Norway (Solør and Toten) over three years, 2010-2012. Residues of wheat from the previous year were collected in spring. Fusarium avenaceum and Fusarium graminearum were the most common Fusarium species recorded on wheat straw residues. IP was calculated as the percentage of the residues infested with Fusarium spp. multiplied by the proportion of the soil surface covered with residues. The IP of Fusarium spp. was lower in ploughed plots compared to those tilled with harrowing only. Ploughing in spring resulted in a similarly low IP as autumn ploughing. In contrast, harrowing in autumn generally reduced IP more than did spring harrowing. The mycotoxin levels in the harvested wheat were generally low, except for deoxynivalenol at high levels in Solør 2011. Despite a lower IP of ploughed versus harrowed plots, this was not reflected in the content of Fusarium and mycotoxins in harvested grain. The Fusarium species that dominated in the residues examined in this study were the same as those detected in the harvested grain, supporting the finding that residues are an important source of inoculum.

Abstract

The abundance of Juncus effusus (soft rush) and Juncus conglomeratus (compact rush) has increased in coastal grasslands in Norway over recent decades, and their spread has coincided with increased precipitation in the region. Especially in water‐saturated, peaty soils, it appears from field observations that productive grasses cannot compete effectively with such rapidly growing rush plants. In autumn–winters of 2012–2013 and 2013–2014, a four‐factor, randomised block greenhouse experiment was performed to investigate the effect of different soil moisture regimes and organic matter contents on competition between these rush species and smooth meadow‐grass (Poa pratensis). The rush species were grown in monoculture and in competition with the meadow‐grass, using the equivalent of full and half the recommended seed rate for the latter. After about three months, above‐ and below‐ground dry matter was measured. J. effusus had more vigorous growth, producing on average 23–40% greater biomass in both fractions than J. conglomeratus. The competitive ability of both rush species declined with decreasing soil moisture; at the lowest levels of soil moisture, growth reductions were up to 93% in J. conglomeratus and 74% in J. effusus. Increasing water level in peat–sand mixture decreased competivitiveness of meadow‐grass, while pure peat, when moist, completely impeded its below‐ground development. These results show that control of rush plants through management may only be achieved if basic soil limitations have been resolved.

To document

Abstract

The objective of this study was to evaluate the effect of wheeling with two different wheel loads (1.7 and 2.8 Mg) and contrasting wheeling intensities (1x and 10x) on the bearing capacity of a Stagnosol derived from silty alluvial deposits. Soil strength was assessed by laboratory measurements of the precompression stress in topsoil (20 cm) and subsoil (40 and 60 cm) samples. Stress propagation, as well as elastic and plastic deformation during wheeling were measured in the field with combined stress state (SST) and displacement transducers (DTS). We also present results from soil physical analyses (bulk density, air capacity, saturated hydraulic conductivity) and barley yields from the first two years after the compaction. Although the wheel loads used were comparatively small, typical for the machinery used in Norway, the results show that both increased wheel load and wheeling intensity had negative effects on soil physical parameters especially in the topsoil but with similar tendencies also in the subsoil. Stress propagation was detected down to 60 cm depth (SST). The first wheeling was most harmful, but all wheelings led to accumulative plastic soil deformation (DTS). Under the workable conditions in this trial, increased wheeling with a small machine was more harmful to soil structure than a single wheeling with a heavier machine. However, the yields in the first two years after the compaction did not show any negative effect of the compaction.

Abstract

In cold-temperate climate with high soil water content in spring, the farmer often faces the choice between topsoil compaction during seedbed preparation and delayed sowing, both of which may reduce attainable cereal yield. The objective of this study was to explore whether future climate change with increasing precipitation would aggravate this dilemma. We generated weather based on historical and projected future climate in Southeastern and Central Norway. Using this weather data as input, we simulated spring workability, attainable yield, timeliness costs, and mechanization management with a workability model and a mechanization model. The projected climate changes resulted in improved workability for spring fieldwork and higher attainable yield in South-eastern Norway, and either positive or negative changes in Central Norway compared to historical conditions. We observed a general increase in variability of workability and attainable yield, and a larger risk of extremely unfavourable years in the most unfavourable scenarios in Central Norway. Changes in profitability and mechanization management were small, but followed the same pattern. The negative effects in the most unfavourable climate scenarios in Central Norway were in contrast to positive effects in earlier studies. We explained discrepancies by differences in research methods and purpose. However, simulated sowing dates of annual crops should consider workability of the soil, in terms of water content. Under worst-case conditions, in need of a certain time window to complete their spring fieldwork, farmers might adapt to impaired spring workability by working the soil at higher water content than simulated in our study. The consequence would be a larger loss of attainable yield and less profitability in the future. We anticipate that negative effects may also be expected in other northern cold-temperate regions with high soil water content in spring.

To document

Abstract

Swede is known as a healthy vegetable with a high content of vitamin C. However, very few studies have worked with the aim to evaluate how varieties, soil type and fertilizer interact and affect quality in swede. In the present study two varieties of swedes (‘Vige’ and ‘Vigod’) were grown on peat, loam and sand, with three levels of K (0, 120, 240 kg ha-1) and N fertilizer (0, 80, 160 kg ha-1). Low to moderate levels of N gave highest saleable yield, highest content of vitamin C and lowest content of nitrate. Peat soil gave highest saleable yield, lowest soluble solids and vitamin C and highest nitrate content. Soluble solids and vitamin C were negatively correlated with total root yield. Sandy soil gave lowest saleable yield, sweetest taste and lowest nitrate content. Contents of total, aliphatic, indole and individual glucosinolates, on dry matter basis, were highest on peat. N fertilization increased the content of most glucosinolates, whereas K affected glucobrassicin at the highest N level. Progoitrin was lowest in roots grown on sand, and was affected by N level and variety on sand and loam soils. Consumers preferred ‘Vigod’, which had the highest intensity of sweetness, although ‘Vige’ had more vitamin C and less nitrate.

Abstract

A future wetter climate in Northern Europe may increase soil compaction from traffic of heavy machinery. This study investigated the impact of tractor traffic on grassland yield, soil physical properties and penetration resistance in three experimental field trials in Norway; on medium sand at Tjøtta, Nordland, on silty medium sand at Fureneset, Sogn og Fjordane and on silt at Løken, Oppland. The experiments were conducted in a split-plot design with three levels of two wheel-by-wheel passes with tractor traffic after each cut: no traffic, light tractor or heavy tractor on large plots, and three different seed mixtures on small plots. The yield reduction by tractor traffic was 26% at Løken, 4% at Fureneset and 1% at Tjøtta. There was a positive correlation between soil moisture content and yield reduction by traffic. Tractor traffic reduced pore volume and air capacity and increased bulk density, compaction degree and penetration resistance with the largest effect at Løken and the smallest at Tjøtta. There were no statistically significant differences in yield or soil physical properties between light and heavy tractor. The study shows that soil texture and soil moisture content are major factors explaining traffic effects on soil physical properties and grassland yield.

Abstract

Four field trials (spring wheat and oats) were conducted (one on clay soil, one on loam soil and two on silt soil) for three years in important cereal growing districts, to investigate the influence of tillage regimes (ploughing versus reduced tillage in either autumn or spring) and straw management (removed and retained) on plant residue amounts, weed populations, soil structural parameters and cereal yields. The effect of tillage on soil structure varied, mainly due to the short trial period. In general, the amount of small soil aggregates increased with tillage intensity. Reduced soil tillage, and in some cases spring ploughing, gave significantly higher aggregate stability than autumn ploughing, thus providing protection against erosion. However, decreasing tillage intensity increased the amounts of weeds, particularly of Poa annua on silt soil. Straw treatment only slightly affected yields, while effects of tillage varied between both year and location. Reduced tillage, compared to ploughing, gave only small yield differences on loam soil, while it was superior on clay soil and inferior on silt soil. Our results suggest that shallow spring ploughing is a good alternative to autumn ploughing, since it gave comparable yields, better protection against erosion and was nearly as effective against weeds.

Abstract

Mineral NPK fertilizer and manure have been compared since 1922 in a ley–arable rotation. During 1982–2003, cattle manure at 20–60 Mg ha−1 year−1 yielded 10–20 % less than mineral fertilizer at 100 kg N:25 kg P:120 kg K ha−1 year−1. The higher manure rates gave large nutrient surpluses. Both manure and mineral fertilizer had increased soil organic carbon (SOC), by 11.3 and 3.4 Mg ha−1 in 1996. In order to study possible residual effects, no manure was applied in 2004–2007 and mineral fertilizer was withheld from some NPK plots. Effects on yield and nutrient uptake were evaluated in relation to plots with no nutrient supply since 1922 and plots still receiving 100 kg N, 25 kg P and 120 kg K ha−1 annually. No residual response of mineral fertilizer was found, but previous manure use gave large effects. The latter yields remained around 85 % of those obtained with mineral fertilizer. Previous use of both mineral fertilizer and manure still increased available soil nutrients and pH in 2007. Differences between treatments in SOC had by then declined slightly, to 9.7 and 2.8 Mg ha−1 for manure and mineral fertilizer respectively, relative to the unfertilized control. Manure and fertilizer applications were resumed in 2008, except at the highest previous manure rate, where mean residual responses up to 2014, relative to the unfertilized control, amounted to 55 % higher yield and increases in nutrient uptake of 47 kg N, 8 kg P and 53 kg K ha−1.

To document

Abstract

Verification of traffic-induced soil compaction after long-term ploughing and ten years minimum tillage on clay loam soil in South-East Norway T. Seehusen, T. Børresen, B.I. Rostad, H. Fleige, A. Zink and H. Riley Abstract Grain yields are presented from a 10-year field trial with four tillage regimes (annual ploughing, harrowing only, ploughing/harrowing alternate years, minimum tillage) on clay loam. We also present soil physical analyses and use the compaction verification tool (CVT) to assess compaction on plots with annual ploughing and minimum tillage, after using slurry tankers with contrasting wheel loads (4.1 Mg, 6.6 Mg) and wheeling intensities (1x/10x) in the 11th trial year, and yields monitored two years after compaction. Winter wheat yields in the period before compaction were strongly affected by tillage, with annual ploughing giving on average 24% higher yield than direct drilling. Both wheat and oats were far less affected in treatments with harrowing only or ploughing/harrowing alternate years, on average within 6% of annual ploughing. Yields after compaction were affected by both previous tillage and compaction intensity. In the first year, single wheeling after annual ploughing gave 23% yield reduction with 4.1 Mg wheel load and 28% reduction with 6.6 Mg wheel load, whilst multiple wheeling gave 14 % reduction at 6.6 Mg wheel load. Yield reductions after minimum tillage ranged from 63% (single wheeling with 4.1 Mg) to 100% (multiple wheeling with 6.6 Mg). Similar trends were found in the second year. The soil physical data indicated that all wheeling led to changes in bulk density, pore sizes and permeability in both topsoil and subsoil on both sampled tillage plots. However, effects in the subsoil were partly masked by the soil’s high initial bulk density, partly due to its high clay content. The CVT, which plots air capacity against hydraulic conductivity, suggested some harmful compaction on both plots, with the minimum tillage plot being less affected than the ploughed plot. However, yield results did not support this conclusion, indicating that other factors limited yields on the minimum tilled plot. Keywords: long term contrasting soil tillage, yield results, slurry tanker, wheel load, wheeling intensity, compaction verification tool.

Abstract

Implications Mulching of GM herbage can increase cereal yields compared to its removal. However, the same GM herbage removed for biogas production will provide biogas residue that can be used as spring fertilizer to cereals. This will improve N-recovery and reduce the risk for N pollution. Cooperation with existing biogas plants will be more efficient, as building small biogas plants are costly and challenging.

Abstract

Abstract: This paper reviews several studies of earthworms in agricultural soils in Norway. Crops and management significantly influence the earthworm fauna. Beneficial impacts of earthworms on plant growth are likely, but challenging to prove. Earthworm casts contain high amounts of extractable plant nutrients, which probably contribute to plant nutrient uptake. Geophagous (soil-eating) species such as Aporrectodea caliginosa and A.rosea dominate the earthworm fauna in our arable soils1. Lumbricus terrestris is also present and was found also in all-arable crop rotations with annual ploughing2. In southern Norway, L. rubellus and A. longa are also common. Earthworm populations, recorded in autumn, vary between 30 and 350 individuals m-2, with the lowest values found in all-arable systems2. The inclusion of leys in the crop rotation increases the abundance of channels, earthworm numbers and their biomass2. Since most earthworms prefer living in the upper soil layer, shallow ploughing (15 cm depth) might be expected to be detrimental. However we found that the number and biomass of earthworms was not lower with shallow than with deep ploughing (25 cm)1. In a study, green manure management affected the biomass, species and number of earthworms3. More worms were found in plots where the green manure was left on the field, compared with where it was removed. L. rubellus responded positively and rapidly to mulching, and so did A.caliginosa in clay soil. The use of biogas slurry from green manure in one season gave no effect on number and biomass of earthworms3. Long-term use of solid animal manure positively influenced some earthworm parameters, even three years after the last application1, compared to mineral fertilizer. Utilizing animal manure to produce biogas may reduce fossil fuel usage and emissions of greenhouse gases. However, there is limited information on how the recycling of digested manure as a fertilizer affects soil fertility in the long run. Reduced recycling of carbon to the soil, may harm soil fauna, including earthworms. In a newly started project on the organic research farm at Tingvoll, Norway, anaerobically digested manure is compared with undigested slurry in perennial ley and arable crops. Effects on crop yields, soil fauna, microbial communities, soil structure, organic matter and nutrient concentrations are being measured. Initial studies showed that several earthworm species were present (A.caliginosa, A.rosea, L.terrestris, L.rubellus, Octolasion cyaneum). Earthworm casts (excrements) from the detritivorous species L. terrestris (that feeds on plant residues) have been shown to be richer in nutrients than bulk soil, but little was known previously about the casts of geophagous species (that ingest mostly soil). Casts from two soil depths (13 and 25 cm) were collected by means of litter bags, to study whether such casts also contained more plant available nutrients than the bulk soil. A.caliginosa and A.rosea were the dominant species in these fields. The casts had considerably higher concentrations of plant nutrients than the bulk soil. The content of total-N was 28 % higher in casts, total-C was 37% higher, the contents of available P and K were 40-60%, whilst those of Ca and Mg were 10-20 % higher. On average for the two sites, these differences corresponded to the following amounts (kg ha-1 y-1): 5.6 for P, 8.9 for K, 5.3 for Mg, 144 for N and 2542 for C. With earthworm densities such as those found in farming systems incl. ley and animal manure (ca. 230 individuals m-2), about 220 tonnes of topsoil per hectare passes through the earthworm digestive tract each year. Our study indicated that earthworm casts are valuable sources of plant nutrients even in soils where the fauna is dominated by geophagous species.

Abstract

The current IPCC guidelines define an estimate for the fraction of mineral fertilizer and animal waste (manure) lost to leaching and runoff (FracLEACH). The FracLEACH default is 30 %. In Norway, 18 % has been used based on calculations made in 1998 (Vagstad et al., 1998). The main purpose of this study was to give an updated estimate of nitrogen (N) leaching in relation to the amounts of N applied in agriculture (FracLEACH). The term losses in this report include both surface and subsurface runoff. The estimates of FracLEACH presented in this report were based on data from the Agricultural Environmental monitoring program (JOVA). The JOVA-program includes catchment and field study sites representing typical situations in Norwegian agriculture with regard to production system, management, intensity, soil, landscape, region and climate. Data from plot- scale study sites confirmed the level of N leaching from the agricultural areas within the JOVA catchments. The overall FracLEACH estimated in this study was 22 % of the N applied. This average covers a variation between sites from 16 % on grassland in Valdres to 44 % in intensive vegetable, potato and cereal production areas in the southernmost part of Norway. Runoff is the most significant parameter for the difference in FracLEACH between catchments. In addition, production system and to some degree soil type are important for FracLEACH. It is thus suggested to use different FracLEACH-values for the different production systems and adjust FracLEACH according to average runoff for the region.

To document

Abstract

The relative effects of using light (2-3 Mg) versus heavier (5-7 Mg) tractors, shallow (15 cm) versus deeper (25 cm) ploughing and on-land versus in-furrow wheel placement during ploughing were investigated from 2003 to 2006 in organic rotations (wheat or barley, green manure, oats with peas) and conventionally fertilized barley. Trials were located on loam soil in south-eastern Norway and silty clay loam in central Norway. Ploughing was performed in spring, when the topsoil moisture content was at or below field capacity, using single furrow ploughs that allowed alternative wheel placement and resulted in complete coverage of the surface by wheels each year (ca. 3 times the normal coverage during ploughing). Low tyre inflation pressures (:<= 80 kPa) were used throughout. The use of a heavy tractor increased topsoil bulk density slightly in the loam soil, and, in combination with in-furrow wheeling, it reduced air-filled pore space and air permeability at 18-22 cm. On the silty clay loam, the use of a heavy tractor did not increase bulk density, but it reduced air-filled pore space throughout the topsoil. In-furrow wheeling reduced air-filled pore space in this soil also, compared to on-land wheeling. Penetration resistance was in this soil always greater at 15-25 cm depth after shallow than after deep ploughing, especially with in-furrow rather than on-land wheeling. Shallow ploughing led on both soils to marked increases in perennial weed biomass compared to deep ploughing. Earthworms were hardly affected by the treatments, but in the loam in 2006 a higher number of individuals were found where the light rather than the heavy tractor had been used. Few significant treatment effects were found on grain yield and quality. Deep ploughing with a light tractor gave the highest wheat yield and protein content in 2 years on the loam soil, and on the silty clay loam the yield of conventionally fertilized barley was higher after deep than after shallow ploughing. In summary, limited evidence was found to support the use of on-land rather than in-furrow wheeling when ploughing is performed at favourable soil moisture and with tractor weights < 5 Mg. There is, however, reason to be wary of using heavy tractors (> 5 Mg), even under such conditions. With regard to ploughing depth in organic rotations dominated by cereals, the need to combat perennial weeds by deep ploughing weighs probably more heavily than any possible beneficial effect of shallow ploughing on stimulating nutrient turnover. (C) 2008 Elsevier B.V. All rights reserved.

To document

Abstract

Yields are reported from four long-term (16 30 years) tillage trials, comparing results since 1998, under relatively wet conditions, with earlier experience. In trial 1, on clay loam, mean grain yield with spring harrowing only, has since 1998 been 87% of that obtained with autumn ploughing, whereas it was 94% for the whole period since 1991. The inclusion of autumn harrowing increased these figures to 94 and 98%, respectively. Over the last six years, spring ploughing gave 5% lower yield than did autumn ploughing. Relative yields of unploughed versus ploughed treatments were negatively correlated with summer rainfall. Grain protein was lowest with spring harrowing only. In trial 2, on clay loam, direct drilling has since 1998, as in previous years, given around 10% lower yield than has autumn ploughing. Autumn harrowing gave 4% lower yield in winter wheat and 6% higher yield in spring oats than did autumn ploughing, whilst yields of spring turnip rape were not significantly affected by tillage. In trial 3, also on clay loam, six alternative straw treatments were compared under four unploughed tillage regimes. Relative to straw removal, retaining large residue amounts depressed yields hardly at all with autumn and spring harrowing, but by 7% with spring harrowing only and by 13% with direct drilling. Overall, direct drilling gave 18% lower yields in this trial than did autumn and spring harrowing, whilst the yield reduction with spring harrowing only was 7%. In trial 4, on silt loam, both spring harrowing only and direct drilling have since 1998 given 6% lower yield than has autumn ploughing, whereas autumn and spring harrowing has given 6% higher yield. Under drier conditions during 1991 1997, autumn ploughing gave up to 11% lower yield than did unploughed treatments. Straw retention was beneficial in the absence of ploughing during that period, but has had little effect in more recent years.