Michel Verheul
Research Scientist
(+47) 934 08 525
michel.verheul@nibio.no
Place
Særheim
Visiting address
Postvegen 213, NO-4353 Klepp stasjon
Authors
Muhammad Naseer Tomas Persson Isabela Righini Cecilia Stanghellini Henk Maessen Peter Ruoff Michel VerheulAbstract
CONTEXT For high latitude countries like Norway, one of the biggest challenges associated with greenhouse production is the limited availability of natural light and heat, particularly in winters. This can be addressed by changes in greenhouse design elements including energy saving equipment and supplemental lighting, which, however, also can have a huge impact on investments, economic performance, resources used and environmental consequences of the production. OBJECTIVE The study aimed at identifying a greenhouse design from a number of feasible designs that generated highest Net Financial Return (NFR) and lowest fossil fuel use for extended seasonal (20th January to 20th November) and year-round tomato production in Norway using different capacities of supplemental light sources as High Pressure Sodium (HPS) and Light Emitting Diodes (LED), heating from fossil fuel and electricity sources and thermal screens by implementing a recently developed model for greenhouse climate, tomato growth and economic performance. METHODS The model was first validated against indoor climate and tomato yield data from two commercial greenhouses and then applied to predict the NFR and fossil fuel use for four locations: Kise in eastern Norway, Mære in mid Norway, Orre in southwestern Norway and Tromsø in northern Norway. The CO2 emissions for natural gas used for heating the greenhouse and electricity used for lighting were calculated per year, unit fruit yield and per unit of cultivated area. A local sensitivity analysis (LSA) and a global sensitivity analysis (GSA) were performed by simultaneously varying the energy and tomato prices. RESULTS AND CONCLUSIONS Across designs and locations, the highest NFR for both production cycles was observed in Orre (116.9 NOK m−2 for extended season and 268.5 NOK m−2 for year-round production). Fossil fuel was reduced significantly when greenhouse design included a heat pump and when extended season production was replaced by a year-round production. SIGNIFICANCE The results show that the model is useful in designing greenhouses for improved economic performance and reduced CO2 emissions from fossil fuel use under different climate conditions in high latitude countries. The study aims at contributing to research on greenhouse vegetable production by studying the effects of various designs elements and artificial lighting and is useful for local tomato growers who either plan to build new greenhouses or adapt existing ones and in policy formulation regarding incentivizing certain greenhouse technologies with an environmental consideration or with a focus on increasing local tomato production.
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Abstract
The availability of fresh vegetables grown in greenhouses under controlled conditions throughout the year has given rise to concerns about their impact on the environment. In high latitude countries such as Norway, greenhouse vegetable production requires large amounts of energy for heat and light, especially during the winter. The use of renewable energy such as hydroelectricity and its effect on the environment has not been well documented. Neither has the effect of different production strategies on the environment been studied to a large extent. We conducted a life cycle assessment (LCA) of greenhouse tomato production for mid-March to mid-October (seasonal production), 20th January to 20th November (extended seasonal) production, and year-round production including the processes from raw material extraction to farm gate. Three production seasons and six greenhouse designs were included, at one location in southwestern and one in northern Norway. The SimaPro software was used to calculate the environmental impact. Across the three production seasons, the lowest global warming (GW) potential (600 g CO2-eq per 1 kg tomatoes) was observed during year-round production in southwestern Norway for the design NDSFMLLED + LED, while the highest GW potential (3100 g CO2-eq per 1 kg tomatoes) was observed during seasonal production in northern Norway for the design NS. The choice of artificial lighting (HPS (High Pressure Sodium) or LED (Light Emitting Diodes)), heating system and the production season was found to have had a considerable effect on the environmental impact. Moreover, there was a significant reduction in most of the impact categories including GW potential, terrestrial acidification, and fossil resource scarcity from seasonal to year-round production. Overall, year-round production in southwestern Norway had the lowest environmental impact of the evaluated production types. Heating of the greenhouse using natural gas and electricity was the biggest contributor to most of the impact categories. The use of an electric heat pump and LED lights during extended seasonal and year-round production both decreased the environmental impact. However, while replacing natural gas with electricity resulted in decreased GW potential, it increased the ecotoxicity potential.
Abstract
Tomato greenhouses at high latitudes (≥58°North) require supplemental light to enable high yields and year-round production. Supplemental light systems can differ in lamp type, high-pressure sodium (HPS) or light emitting diode (LED), and also vary in lamp capacity. Based on a combined greenhouse climate, tomato yield, and greenhouse economics model, a methodology was developed, for determining the optimal supplemental light system, dependent on local climate and economic conditions. Two optimisation objectives were considered separately, maximal energy use efficiency (EUE) and maximal net financial result (NFR). The developed methodology was applied to four different greenhouse locations in Norway. At each location, both optimisation objectives were reached with LEDs. The optimal lamp capacities range from 256 to 341 μmol m−2 s−1 (maximal EUE) and 302–323 μmol m−2 s−1 (maximal NFR). The economically optimal lamp capacity is little sensitive to climate conditions. At the lamp type respective NFR maxima, LEDs resulted, on average, in 10% higher tomato yield, 102.2 NOK m−2 year−1 higher NFR, and 35% higher EUE. Consequently, switching from HPS lamps to LEDs enables increasing productivity, energy efficiency and profitability of greenhouse tomato production. Furthermore, the difference between EUE and NFR optima was, on average, 24% lower in terms of EUE and 56% lower in terms of NFR, when using LEDs instead of HPS lamps. On farm-scale, the proposed methodology can be used as decision-support-tool for selecting an efficient and profitable supplemental light system for greenhouse tomato production, dependent on local climate and economic conditions.
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel Verheul Henk Maessen Martina Paponov Anush Panosyan Dmitry Kechasov Muhammad Naseer Ivan PaponovAbstract
Studies of whole-plant responses of tomato to light environments are limited and cannot be extrapolated from observations of seedlings or short-term crops in growth chambers. Effects of artificial light sources like high pressure sodium (HPS) and light emitting diodes (LED) are mainly studied as supplement to sunlight in greenhouses. Since natural sunlight is almost neglectable in Norway during wintertime, we could study effects of different types of artificial light on crop growth and production in tomato. The goal of this experiment was to quantify the effects of artificial HPS top-light, installed at the top of the canopy, and LED inter-light, installed between plant rows, on fresh and dry matter production and fruit quality of greenhouse tomatoes under controlled and documented conditions. Our aim was to optimize yield under different light conditions, while avoiding an unfavourable source-sink balance. Tomato plants were grown under HPS top light with an installed capacity of 161, 242 and 272 W m−2 combined with LED inter-light with an installed capacity of 0, 60 or 120 W m−2. We used stem diameter as a trait to regulate air temperature in different light treatments in order to retain plant vigour. Results show that both HPS top light and LED inter-light increased tomato yield. However, the positive effect of supplemental LED inter-light decreased at higher amounts of HPS top light. Under the conditions in this experiment, with neglectable incoming solar radiation, an installed amount of 242 Watt m-2 HPS top light and a daily light integral (DLI) of 30 mol m-2 day-1 resulted in best light use efficiency (in gram fresh tomato per mol). Addition of LED inter-light to HPS top light reduced light use efficiency. Results show that winter production using artificial light in Norway is more energy efficient compared to production under sunlight in southern countries. Results can be used for modelling purposes.
Authors
Muhammad Naseer Tomas Persson Isabella Righini Cecilia Stanghellini Henk Maessen Michel VerheulAbstract
Greenhouses are complex systems whose size, shape, construction material, and equipment for climate control, lighting and heating can vary largely. The greenhouse design can, together with the outdoor weather conditions, have a large impact on the economic performance and the environmental consequences of the production. The aim of this study was to identify a greenhouse design out of several feasible designs that generated the highest net financial return (NFR) and lowest energy use for seasonal tomato production across Norway. A model-based greenhouse design method, which includes a module for greenhouse indoor climate, a crop growth module for yield prediction, and an economic module, was applied to predict the NFR and energy use. Observed indoor climate and tomato yield were predicted using the climate and growth modules in a commercial greenhouse in southwestern Norway (SW) with rail and grow heating pipes, glass cover, energy screens, and CO2-enrichment. Subsequently, the NFR and fossil fuel use of five combinations of these elements relevant to Norwegian conditions were determined for four locations: Kise in eastern Norway (E), Mære in midwestern Norway (MW), Orre in southwestern Norway (SW) and Tromsø in northern Norway (N). Across designs and locations, the highest NFR was 47.6 NOK m−2 for the greenhouse design with a night energy screen. The greenhouse design with day and night energy screens, fogging and mechanical cooling and heating having the lowest fossil energy used per m2 in all locations had an NFR of −94.8 NOK m−2. The model can be adapted for different climatic conditions using a variation in the design elements. The study is useful at the practical and policy level since it combines the economic module with the environmental impact to measure CO2 emissions.
Authors
Muhammad Naseer Tomas Persson Isabella Righini Cecilia Stanghellini Michel Verheul Henk MaessenAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Abstract
Continuous light (CL) or a predominant nitrogen supply as ammonium (NH4+) can induce leaf chlorosis and inhibit plant growth. The similarity in injuries caused by CL and NH4+ suggests involvement of overlapping mechanisms in plant responses to these conditions; however, these mechanisms are poorly understood. We addressed this topic by conducting full factorial experiments with tomato plants to investigate the effects of NO3− or NH4+ supply under diurnal light (DL) or CL. We used plants at ages of 26 and 15 days after sowing to initiate the treatments, and we modulated the intensity of the stress induced by CL and an exclusive NH4+ supply from mild to strong. Under DL, we also studied the effect of nitrogen (N) deficiency and mixed application of NO3− and NH4+. Under strong stress, CL and exclusive NH4+ supply synergistically inhibited plant growth and reduced chlorophyll content. Under mild stress, when no synergetic effect between CL and NH4+ was apparent on plant growth and chlorophyll content, we found a synergetic effect of CL and NH4+ on the accumulation of several plant stress hormones, with an especially strong effect for jasmonic acid (JA) and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, in xylem sap. This modulation of the hormonal composition suggests a potential role for these plant hormones in plant growth responses to the combined application of CL and NH4+. No synergetic effect was observed between CL and NH4+ for the accumulation of soluble carbohydrates or of mineral ions, indicating that these plant traits are less sensitive than the modulation of hormonal composition in xylem sap to the combined CL and NH4+ application. Under diurnal light, NH4+ did not affect the hormonal composition of xylem sap; however, N deficiency strongly increased the concentrations of phaseic acid (PA), JA, and salicylic acid (SA), indicating that decreased N concentration rather than the presence of NO3− or NH4+ in the nutrient solution drives the hormone composition of the xylem sap. In conclusion, N deficiency or a combined application of CL and NH4+ induced the accumulation of JA in xylem sap. This accumulation, in combination with other plant hormones, defines the specific plant response to stress conditions.
Abstract
In regions with intensive agricultural production, large amounts of organic waste are produced by livestock animals. Liquid digestate from manure-based biogas production could potentially serve as fertilizer if integrated with closed horticultural irrigation systems. The aim of this experiment was to investigate how fertilizer based on liquid biogas by-products of pig manure digestion can affect the growth and production of tomato plants. Integration of a nitrification bioreactor presumes a significantly lower concentration of nutrient solutions and a higher level of oxygenation than classical mineral cultivation. Therefore, additional controls were included. We compared plant growth and fruit quality traits of tomato plants grown in a hydroponic solution with organic fertilizer with two levels of mineral fertilizer. The tomatoes grown with organic waste-based liquid fertilizer showed reduced growth rates but increased mean fruit size, resulting in no significant change in total yield compared with high-mineral cultivation. The growth rate was similarly reduced in plants cultivated with low-mineral fertilizer. Plants cultivated with organic waste-based fertilizer had high Cl− concentration in xylem sap, leaves, and, ultimately, fruits. The leaves of plants cultivated with organic waste-based fertilizer contained higher concentrations of starch and soluble carbohydrate and low concentrations of phosphorous (P) and sulfur (S). The plants grown with organic waste-based or low-mineral medium showed significantly poorer fruit quality than the plants cultivated with the high-mineral solution. The low-mineral treatment increased xylem sap contribution to fruit weight because of higher root power. The organic waste-based fertilization did not change the root power but increased fruit size. In conclusion, organic waste-based cultivation is a possible solution for sustainable plant production in greenhouses. However, additional adjustment of nutrient supply is required to improve fruit quality.
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Isabella Righini Bram Vanthoor Michel Verheul Muhammad Naseer Henk Maessen Tomas Persson Cecilia StanghelliniAbstract
A greenhouse climate-crop yield model was adapted to include additional climate modification techniques suitable for enabling sustainable greenhouse management at high latitudes. Additions to the model were supplementary lighting, secondary heating and heat harvesting technologies. The model: 1) included the impact of different light sources on greenhouse air temperature and tomato production 2) included a secondary heating system 3) calculated the amount of harvested heat whilst lighting was used. The crop yield model was not modified but it was validated for growing tomato in a semi-closed greenhouse equipped with HPS lamps (top-lights) and LED (inter-lights) in Norway. The combined climate-yield model was validated with data from a commercial greenhouse in Norway. The results showed that the model was able to predict the air temperature with sufficient accuracy during the validation periods with Relative Root Mean Square Error <10%. Tomato yield was accurately simulated in the cases under investigation, yielding a final production difference between 0.7% and 4.3%. Lack of suitable data prevented validation of the heat harvest sub-model, but a scenario is presented calculating the maximum harvestable heat in an illuminated greenhouse. Given the cumulative energy used for heating, the total amount of heating pipe energy which could be fulfilled with the heat harvestable from the greenhouse air was around 50%. Given the overall results, the greenhouse climate(-crop yield) model modified and presented in this study is considered accurate enough to support decisions about investments at farm level and/or evaluate beforehand the possible consequences of environmental policies.
Authors
Jiangsan Zhao Dmitry Kechasov Boris Rewald Gernot Bodner Michel Verheul Nicholas Clarke Jihong Liu ClarkeAbstract
Hyperspectral imaging has many applications. However, the high device costs and low hyperspectral image resolution are major obstacles limiting its wider application in agriculture and other fields. Hyperspectral image reconstruction from a single RGB image fully addresses these two problems. The robust HSCNN-R model with mean relative absolute error loss function and evaluated by the Mean Relative Absolute Error metric was selected through permutation tests from models with combinations of loss functions and evaluation metrics, using tomato as a case study. Hyperspectral images were subsequently reconstructed from single tomato RGB images taken by a smartphone camera. The reconstructed images were used to predict tomato quality properties such as the ratio of soluble solid content to total titratable acidity and normalized anthocyanin index. Both predicted parameters showed very good agreement with corresponding “ground truth” values and high significance in an F test. This study showed the suitability of hyperspectral image reconstruction from single RGB images for fruit quality control purposes, underpinning the potential of the technology—recovering hyperspectral properties in high resolution—for real-world, real time monitoring applications in agriculture any beyond.
Abstract
No abstract has been registered
Abstract
Recycling of waste fractions from farms and greenhouses might reduce environmental pollution. However, recycling of nutrient solution in greenhouse is risky due to danger of disease spread. Nitrification bacteria can be used for aerobic conversion of ammonia to nitrate in organic waste and may function as stable microbial community protecting against pathogen attacks by enhancing induced systemic resistance of plants. We developed a hydroponic cultivation system “Organoponics” allowing growth of tomato plant on organic fertilizer with recirculation of nutrient solution. Liquid by-product of biogas production has been used as organic fertilizer. A moving-bed bioreactor was integrated in the system for aerobic nitrification of ammonia. Influence of fertilizer composition (organic, mineral matching organic, standard mineral) and addition of plant growth promoting bacteria on biomass distribution, tomato fruit quality were investigated. Plants grown on organic fertilizer were more generative with largest root index. They also produced fruits with significantly larger average size along whole cluster. Addition of the bacteria to root rhizosphere improved yield and quality parameters of plants received organic fertilization and negatively affected the same parameters in plants received mineral fertilization.
Abstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Abstract
We investigated the effect of supplemental LED inter-lighting (80% red, 20% blue; 70 W m−2; light period 04:00–22:00) on the productivity and physiological traits of tomato plants (Flavance F1) grown in an industrial greenhouse with high pressure sodium (HPS) lamps (235 W m−2, 420 µmol m−2 s−1 at canopy). Physiological trait measurements included diurnal photosynthesis and fruit relative growth rates, fruit weight at specific positions in the truss, root pressure, xylem sap hormone and ion compositions, and fruit quality. In the control treatment with HPS lamps alone, the ratio of far-red to red light (FR:R) was 1.2 at the top of the canopy and increased to 5.4 at the bottom. The supplemental LED inter-lighting decreased the FR:R ratio at the middle and low positions in the canopy and was associated with greener leaves and higher photosynthetic light use efficiency (PLUE) in the leaves in the lower canopy. The use of LED inter-lighting increased the biomass and yield by increasing the fruit weight and enhancing plant growth. The PLUE of plants receiving supplemental LED light decreased at the end of the light period, indicating that photosynthesis of the supplemented plants at the end of the day might be limited by sink capacity. The supplemental LED lighting increased the size of fruits in the middle and distal positions of the truss, resulting in a more even size for each fruit in the truss. Diurnal analysis of fruit growth showed that fruits grew more quickly during the night on the plants receiving LED light than on unsupplemented control plants. This faster fruit growth during the night was related to an increased root pressure. The LED treatment also increased the xylem levels of the phytohormone jasmonate. Supplemental LED inter-lighting increased tomato fruit weight without affecting the total soluble solid contents in fruits by increasing the total assimilates available for fruit growth and by enhancing root activity through an increase in root pressure and water supply to support fruit growth during the night.
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Isabella Righini Bram Vanthoor Michel Verheul Muhammad Naseer Henk Maessen Tomas Persson I. Tsafaras Cecilia StanghelliniAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Å bygge veksthus på tak i byer kan ha flere fordeler. Redusert avstand til forbrukere gir ferskere varer og mindre kostnader og forurensing forbundet med transport og lagring. Dette er spesielt viktig for byer som ligger langt fra der maten produseres. Veksthus i byer kan også gi den urbane befolkningen muligheten til å lære mer om hvordan mat dyrkes. Ved å bygge veksthus på tak istedenfor på bakken spares arealer som i stedet kan brukes til jordbruk, grøntområder eller andre typer boliger. Et veksthus på tak som er integrert med den øvrige bygningen, kan også utnytte varmen fra etasjene under, noe som vil være energibesparende.
Authors
Luc Graamans Isabella Righini Bram Vanthoor Michel Verheul Muhammad Naseer Henk Maessen Tomas Persson I. Tsafaras Cecilia StanghelliniAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Trond Løvdal Bart Van Droogenbroeck Evren Caglar Eroglu Stanislaw Kaniszewski Giovanni Agati Michel Verheul Dagbjørn SkipnesAbstract
There is a large potential in Europe for valorization in the vegetable food supply chain. For example, there is occasionally overproduction of tomatoes for fresh consumption, and a fraction of the production is unsuited for fresh consumption sale (unacceptable color, shape, maturity, lesions, etc.). In countries where the facilities and infrastructure for tomato processing is lacking, these tomatoes are normally destroyed, used as landfilling or animal feed, and represent an economic loss for producers and negative environmental impact. Likewise, there is also a potential in the tomato processing industry to valorize side streams and reduce waste. The present paper provides an overview of tomato production in Europe and the strategies employed for processing and valorization of tomato side streams and waste fractions. Special emphasis is put on the four tomato-producing countries Norway, Belgium, Poland, and Turkey. These countries are very different regards for example their climatic preconditions for tomato production and volumes produced, and represent the extremes among European tomato producing countries. Postharvest treatments and applications for optimized harvest time and improved storage for premium raw material quality are discussed, as well as novel, sustainable processing technologies for minimum waste and side stream valorization. Preservation and enrichment of lycopene, the primary health promoting agent and sales argument, is reviewed in detail. The European volume of tomato postharvest wastage is estimated at >3 million metric tons per year. Together, the optimization of harvesting time and preprocessing storage conditions and sustainable food processing technologies, coupled with stabilization and valorization of processing by-products and side streams, can significantly contribute to the valorization of this underutilized biomass.
Authors
Leonardo Ciaccheri Lorenza Tuccio Andrea A. Mencaglia Anna G. Mignani Ewelina Hallmann Kalina Sikorska-Zimny Stanislaw Kaniszewski Michel Verheul Giovanni AgatiAbstract
Non-destructive tools for evaluating the lycopene content in tomatoes are of great interest to the entire fruit chain because of an increasing demand for beneficial health products. With the aim of developing compact low-cost reflectance sensors for lycopene determination, we compared Partial Least Squares (PLS) prediction models by using either directional or total reflectance in the 500–750 nm range. Directional reflectance at 45° with respect to the LED lighting direction was acquired by means of a compact spectrometer sensor. Total reflectance was acquired through a 50-mm integrating sphere connected to a spectrometer. The analysis was conducted on two hydroponic greenhouse cultivated red tomato varieties, namely the large round ‘Dometica’ (average diameter: 57 mm) and the small cherry ‘Juanita’ (average diameter: 26 mm). For both varieties, the spectral variance of directional reflectance was well correlated to that of total reflectance. The performances of the PLS prediction models were also similar, with R2 of cross-validation between 0.73 and 0.81. The prediction error, relative to the mean lycopene content of full ripe tomatoes, was similar: i.e. around 16–17% for both varieties and sensors. Our results showed that directional reflectance measured by means of portable, low-cost and compact LED-based sensors can be used with an adequate precision for the non-destructive assessment of lycopene in tomatoes.
Abstract
Lunch canteens and their salad bars are an important arena for sales and consumption of vegetables including herbs. One major Norwegian canteen operator had a turnover of more than seven thousand tons of fresh vegetables in 2016, with lettuce, tomato, potato, cucumber and bell pepper being the most important species. A typical lunch meal included about 260 g vegetables including potatoes. Vegetables used in 450 canteens were either green, yellow, orange, red, purple/dark or colorless, and consisted of pigments of chlorophylls, carotenoids, anthocyanins and betalains. The total pigment content in the 60 most abundant vegetables was calculated to be 14.5-28.3 mg 100 g-1 FW. Of all vegetables in the canteens, 60% were found to be green. The intake of chlorophyll through one lunch meal was estimated to be 46 mg. Lettuce was found to be the single most important source of chlorophylls as this species was consumed in high amounts and made up 20% of the vegetables in a lunch meal. Carotenoids was found in all colored vegetables except the purple/dark ones and an estimate revealed an intake of 15 mg total carotenoids from lunch vegetables. Tomato was found to be the most important carotenoid source representing 44% of the total intake. Due to high pigment concentrations and popularity of red beets in the salad bars, the intake of betalains through a lunch meal was estimated to be 3 mg, similar to the total intake of anthocyanins from vegetable species.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Trond Løvdal Ingunn M. Vågen Giovanni Agati Lorenza Tuccio Stanislaw Kaniszewski Maria Gregorowska Ryszard Kosson Agnieszka Bartoszek Ferruh Erdogdu Mustafa Tutar Bart van Droogenbroeck Christine Vos Inge Hanssen Romain Larbat Christophe Robin Michel Verheul Randi Seljåsen Dagbjørn SkipnesAbstract
The project “Sustainable food production through quality optimized raw-material production and processing technologies for premium quality vegetable products and generated by-products” [SUNNIVA] aimed at the development of a sustainable food system from production to consumption, addressing the entire food supply chain for the vegetables tomato and Brassicae. The goal was better utilisation of the vegetable raw materials, reduced energy and water consumption, higher profitability and healthier food. This was achieved by providing various valorisation strategies to reduce waste and limiting environmental impact. Preservation of the intrinsic health-beneficial phytochemicals present in the raw material in order to improve the nutritional properties of vegetable food products was central in the project. The project contained optimization of harvest time and pre-processing storage conditions, development of novel mild processing design based on modelling, and a two-track valorisation strategy. SUNNIVA has demonstrated how the various residual raw materials can be exploited to the full: Either directly for sustainable production of healthy food (as a refined product or an ingredient), or indirectly by bringing it back into the food chain (as organic fertilizers and soil amendment products) in order to generate renewed primary production with minimal environmental impact.
Authors
Trond Løvdal Ingunn M. Vågen Giovanni Agati Lorenza Tuccio Stanislaw Kaniewski Maria Gregorowska Ryszard Kosson Michel Verheul Agnieszka Bartoszek Ferruh Erdogdu Mustafa Tutar Bart van Droogenbroeck Christine Vos Inge Hanssen Romain Larbat Christophe Robin Dagbjørn SkipnesAbstract
The SUNNIVA project aims to increase the overall sustainability of vegetable processing by providing valorisation strategies to reduce waste and limiting environmental impact, while improving the nutritional properties of vegetable food products. Results obtained during the first project year indicate that; (i) The waste and by-product fractions of cabbage, tomato and black salsify have a great potential to be better utilized in the food processing chain and to serve as valuable sources for health beneficial phytochemicals (HBPC), and (ii) that tomato and grape seed press cakes have an interesting plant nutritional (NPK) profile, which makes them suitable candidates as raw material in soil amendments. Further, raw materials from tomato and cabbage, in terms of cultivars and morphological parts, has been assessed for HBPC and nutritional value as an effect of N-fertilization and processing. Experimental data for deriving numerical thermal models for agitated and static retort are obtained. Mapping of the most important underutilized vegetable biomass streams in partnering countries are under way. The development of non-destructive tools for rapid HBPC measurements in cabbage and tomato is promising, but some more calibration/validation of the method is necessary. One year into the 3-year project, we conclude that progress has been satisfactory.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Romain Larbat Kristine Marie Olsen Rune Slimestad Trond Karsten Løvdal Camille Bénard Michel Verheul Frédéric Bourgaud Christophe Robin Cathrine LilloAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Tomato plants (Solanum lycopersicum, cv. Suzanne) were subjected to complete nutrient solution or a solution without nitrogen (N), and placed at different temperatures and light conditions to test the effects of environment on flavonoids and caffeoyl derivatives and related gene expression. N depletion during 4-8 days resulted in enhanced levels of flavonoids and caffeoyl derivatives. Anthocyanins showed pronounced increased levels when lowering the growth temperature from 24 degrees C to 18 degrees C or 12 degrees C. Flavonol levels increased when the light intensity was increased from 100 mu mol m(-2) s(-1) to 200 mu mol m(-2) s(-1) PAR. Synergistic effects of the various environmental factors were observed. The increase in content of quercetin derivatives in response to low temperatures was only found under conditions of N depletion, and especially at the higher light intensity. Expression of structural genes in the phenylpropanoid and flavonoid pathways, PAL (phenylalanine ammonia lyase), CHS (chalcone synthase), F3H (flavanone 3-hydroxylase), and FLS (flavonol synthase) increased in response to N depletion, in agreement with a corresponding increase in flavonoid and caffeoyl content. Expression of these structural genes generally also increased in response to lower temperatures. As indicated through expression studies and correlation analysis, effects of N depletion were apparently mediated through the overall regulators of the pathway the MYB transcription factor ANT1 (ANTHOCYANIN 1) and SlJAF13 (a bHLH transcription factor orthologue of petunia JAF13 and maize RED genes). A PAL gene (PAL6) was identified, and correlation analysis was compatible with PAL6 being an actively expressed gene with function in flavonoid synthesis. (C) 2009 Elsevier Ltd. All rights reserved.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Kristine Marie Olsen Rune Slimestad Unni Synnøve Lea Cato Brede Trond Karsten Løvdal Peter Ruoff Michel Verheul Cathrine LilloAbstract
The flavonoid pathway is known to be up-regulated by different environmental stress factors. Down-regulation of the pathway is much less studied and is emphasized in the present work. Flavonoid accumulation was induced by exposing plants for 1 week to nitrogen depletion at 10 degrees C, giving high levels of anthocyanins and 3-glucoside-7-rhamnosides, 3,7-di-rhamnosides and 3-rutinoside-7-rhamnosides of kaempferol and quercetin. Flavonol accumulation as influenced by temperatures and nitrogen supply was not related to the glycosylation patterns but to the classification as quercetin and kaempferol. When nitrogen was re-supplied, transcripts for main regulators of the pathway, PAP1/GL3 and PAP2/MYB12, fell to less than 1 and 0.1% of initial values, respectively, during 24 h in the 15-30 degrees C temperature range. Anthocyanins showed a half-life of approximately 1 d, while the degradation of flavonols was much slower. Interestingly, the initial fluxes of anthocyanin and flavonol degradations were found to be temperature-independent. A kinetic model for the flavonoid pathway was constructed. In order to get the observed concentration-temperature profiles as well as the temperature compensation in the flavonoid degradation flux, the model predicts that the flavonoid pathway shows an increased temperature sensitivity at the end of the pathway, where the up-regulation by PAP/GL3 has been found to be largest.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered
Authors
Michel VerheulAbstract
No abstract has been registered

Intelligent use of light and new lighting technology for energy efficient and quality-assured year-round production of cucumber in Norway

Increasing Energy Efficiency for Green CO2 capture

Green Greenhouse growth

Division of Food Production and Society
Bio-farming for bioactive compounds
The objective of "Bio-farming for bioactive compounds" is to increase value in the Norwegian agricultural sector by producing bioactive compounds (phytogens) for addition to feed and packaging materials aimed to 1) increase shelf life of salmon feed 2) reduce winter ulcers in farmed fish 3) improve the health and intestinal flora in poultry, and 4) designing biodegradable and antimicrobial packaging materials.

Division of Food Production and Society
Sustainable growth of the Norwegian Horticulture Food System – GreenRoad GS35 (“GrøntStrategi mot 2035)
The main aim of GreenRoad is to deliver knowledge and solutions for increased value creation and sustainability in the horticultural food system in Norway.