Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2007

Sammendrag

Fine roots (2 mm) are very dynamic and play a key role in forest ecosystem carbon and nutrient cycling and accumulation. We reviewed root biomass data of three main European tree species European beech, (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.), in order to identify the differences between species, and within and between vegetation zones, and to show the relationships between root biomass and the climatic, site and stand factors.The collected literature consisted of data from 36 beech, 71 spruce and 43 pine stands. The mean fine root biomass of beech was 389 g m-2, and that of spruce and pine 297 g m-2 and 277 g m-2, respectively. Data from pine stands supported the hypothesis that root biomass is higher in the temperate than in the boreal zone.The results indicated that the root biomass of deciduous trees is higher than that of conifers. The correlations between root biomass and site fertility characteristics seemed to be species specific. There was no correlation between soil acidity and root biomass. Beech fine root biomass decreased with stand age whereas pine root biomass increased with stand age. Fine root biomass at tree level correlated better than stand level root biomass with stand characteristics. The results showed that there exists a strong relationship between the fine root biomass and the above-ground biomass.

Sammendrag

Human-induced and natural stress factors can affect fine roots and ectomycorrhizas. Therefore they have potential utility as indicators of environmental change. We evaluated, through meta-analysis, the magnitude of the effects of acidic deposition, nitrogen deposition, increased ozone levels, elevated atmospheric carbon dioxide, and drought on fine roots and ectomycorrhizal (ECM) characteristics. Ectomycorrhizal colonization was an unsuitable parameter for environmental change, but fine root length and biomass could be useful. Acidic deposition had a significantly negative impact on fine roots, root length being more sensitive than root biomass. There were no significant effects of nitrogen deposition or elevated tropospheric ozone on the quantitative root parameters. Elevated CO2 had a significant positive effect. Drought had a significantly negative effect on fine root biomass. The negative effect of acidic deposition and the positive effect of elevated CO2 increased over time, indicating that effects were persistent contrary the other factors. The meta-analysis also showed that experimental conditions, including both laboratory and field experiments, were a major source of variation. In addition to quantitative changes, environmental changes affect the species composition of the ectomycorrhizal fungal community.

Sammendrag

Plant polyphenolics continue to be the focus of attention with regard to their putative impact on human health. An increasing and ageing human population means that the focus on nutrition and nutritional enhancement or optimisation of our foodstuffs is paramount. Using the raspberry as a model, we have shown how modern metabolic profiling approaches can be used to identify the changes in the level of beneficial polyphenolics in fruit breeding segregating populations and how the level of these components is determined by genetic and/or environmental control. Interestingly, the vitamin C content appeared to be significantly influenced by environment (growth conditions) whilst the content of the polyphenols such as cyanidin, pelargonidin and quercetin glycosides appeared much more tightly regulated, suggesting a rigorous genetic control. Preliminary metabolic profiling showed that the fruit polyphenolic profiles divided into two gross groups segregating on the basis of relative levels of cyanidin-3-sophoroside and cyanidin-3-rutinoside, compounds implicated as conferring human health benefits.

Til dokument

Sammendrag

To study physiological and biochemical effects of demethylation inhibitor (DMI) fungicides on non-target insects, larvae of the cabbage moth, Mamestra brassicae L., were exposed orally to propiconazole, (R,S)-1-[2-(2,4-diclophenyl)-4-propyl-1,3-dioolan-2-ylmetyl]-1H-1,2,4-triazole (100, 200 and 600 mg L−1) and fenpropimorph, (±)-cis-4-[3-(4-tert-butylphenyl)-2-methylpropyl] 2,6-dimethylmorpholinc (10, 100, 200 and 600 mg L−1) in a semi-synthetic diet. Ten mg L−1 of fenpropimorph reduced larval weight and induced in vitro glutathione S-transferase activity. Reduced larval and pupal growth rate, reduced survival, prolonged developmental time, and altered patterns of larval survival and adult emergence were found for one or both fungicides in at least one of the concentrations tested. The results suggest, that although the use of agricultural fungicides is generally regarded as of minor ecotoxicological consequence for insects, feeding on DMI-treated crops may influence insect fitness, and may also leave them susceptible to pesticide treatments or to residues of pesticides and other pollutants in their food. Standard methods to detect such effects should be developed for use in the environmental risk assessment of these products.