Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2008

Sammendrag

How the chemical composition of plant biomolecules controls their dynamics in soils at the long-term scale remains largely unknown. Stabilisation mechanisms in soils might depend upon the chemical nature of organic matter. These mechanisms either involve soil mineral constituents or are related to chemical recalcitrance of specific molecules such as lignins. Physical and physico-chemical protection mechanisms may act differently on above- and belowground tissues of plants, leading to contrasting contributions of these tissues to soil organic matter (SOM). Cutins and suberins are specific for above and the belowground tissues of higher plants, respectively. Their molecular constituents can be used as biomarkers of the inputs of these plant tissues to soils. In this study, the molecular turnover of specifically plant-derived constituents in soils were estimated using compound specific isotopic tracer techniques applied to agricultural lands converted from C3 plant to C4 plant cropping. We assessed the specific residence times of lignins, cutins and suberins in soils, in order to compare the contributions of above- and belowground tissues to SOM. Lignin turnover in soil was faster than that of total organic carbon. Contrasting dynamics in soils were observed among lignin monomers as well as among cutin/suberin markers, which might be related to their chemical nature, their position into the polymeric structure and/or to the plant tissue in which they are present. This study, combining compound specific isotope measurements with a long term field trial helped understanding soil carbon turnover on a molecular level.

Sammendrag

Vegetation fire is the worldwide disturbance that affects the largest area and biggest biomes variety. Fire instantaneously generates large C fluxes to the atmosphere, as gas and soot particles. In the same time, part of ecosystem organic matter (OM) is converted into charred material that may contribute to the stable pool of soil organic carbon (SOC). The net effect of vegetation fire on C sequestration remains uncertain because the two major impacts operate at very different timescales and C budget is highly dependent on ecosystem and fire conditions. The aim of the present research was to assess fire-induced C fluxes to the atmosphere and as new litter and charcoal production during a prescribed fire in a subtropical oak shrub. Pre-fire biomass and post-fire charred and unburned biomass were determined for vegetation leaves and stems, litter and soil in 20 sub-plots installed in a 30-ha area prescribed for fire. Concentrations of C were determined, and fluxes among pools and to the atmosphere were derived from these measurements. In a first assessment, charred OM was visually identified in standing biomass and litter using its black and shiny aspect. In a second step, a strong chemical oxidation with K2Cr2O7/H2SO4 was used to isolate only a highly recalcitrant part of pyrogenic C. After the fire, standing dead biomass was only composed of stems with charred surface. The leaves transferred from vegetation to litter during the fire represented more than a half of post-fire litter. Percentage of initial C pool that was lost to the atmosphere as gas or particles was 55 % from vegetation stems, 80 % from vegetation leaves, and 70 % from litter. Soil C stocks were not significantly modified by fire, in agreement with moderate temperature elevation in the soil proper. Total C release to the atmosphere, including gas and particles, was 2.6 kg C m"2. Visually-identified charcoal represented 5% of remaining stem C (i.e. 60 g C m"2) and 21% of post-fire litter C (i.e. 80 g C m"2). The stem and litter charcoal contained 4±4 % and 16±5 % of highly recalcitrant C, respectively. We assessed that a typical scrubland fire may add between 10 and 140 g C m"2of chemically stable pyrogenic C to the soil. The conversion rate of ecosystem C to chemically stable pyrogenic C would be between 0.2 and 3.4 %.