Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2010

Sammendrag

A second Working Ring Test (WRT) was organised within the framework of the EU/Life+ FutMon Project (`Further Development and Implementation of an EU-level Forest Monitoring System`, LIFE07 ENV/D/000218), to evaluate the overall performance of the laboratories responsible for analysing atmospheric deposition and soil solution samples in European forests, and to verify improvements in the analytical quality resulting from the QA/QC work carried out in the laboratories which participated in previous WRTs organized in the framework of the UN/ECE ICP Forests Monitoring Programme. The WRT was carried out in accordance with International ISO and ILAG guide proficiency test both for sample preparation and numerical elaboration of the results. Five natural atmospheric deposition and soil solution samples and 3 synthetic solutions were distributed to 42 laboratories for analysis using their routine methods for the following variables: pH, conductivity, calcium, magnesium, sodium, potassium, ammonium, sulphate, nitrate, chloride, total alkalinity, total dissolved nitrogen (TDN), dissolved organic carbon (DOC). Two tolerable limits were defined for each variable on the basis of the measured value, the results of previous WRTs, a comparison with the Data Quality Objectives of other international networks, and the importance of the variable in deposition and soil solution monitoring. In the ring test 12% of the results from all the laboratories did not fall within the tolerable limits. This enabled us to identify those variables and laboratories for which improvements in analytical performance are required. The results of the exercise clearly show that the use of data check procedures, as described in the ICP Forests manual for sampling and analysis of atmospheric deposition, makes it possible to detect the presence of inaccurate or outlying results, and would therefore greatly improve the overall performance of the laboratories. A discussion of the improvement of the results in this WRT compared to the previous WRTs is also included, showing a relevant improvent for several variables and underlining the importance of participating to these exercises for the overall analytical quality of the monitoring network.

Sammendrag

Scots pine (Pinus sylvestris) sapwood is per definition (EN-350-2) easy to treat. Combination with its good availability on the European markets, it is a construction and building material in demand. However, partially large differences in penetration are reported from industry and research. To keep a reliable product quality, impregnation processes aligned to the material most difficult to treat. Hence, it is crucial to know about the factors inhibiting the fluid flow into the material. Scots pine samples from a wide geographic distribution, 25 different sites in 6 different countries, have been collected and impregnated with an aqueous monomer furfuryl alcohol solution. From each of the respective sites logs of 1.3 meter in length were collected from nine trees belonging to three different breast height diameter classes. Three trees from each dominance class were chosen randomly. The log was drawn from the felled stem in a height of 1.2 meters with exact marked north/south exposition. Sapwood slabs orientated in the heaven directions, underwent a drying procedure at 40°C for 48 h and small clear samples of 20 x 20 x 50 mm were prepared. A large variation of the ratio of filling was found for the material tested. Diameter as well as sample origin seem to influence the materials permeability.

Sammendrag

Scots pine (Pinus sylvestris) and especially its heartwood is one of the most common construction materials for general outer use e.g. windows or facades in northern Europe. It is considered being use class 3 and is according to EN 350-2 \"not treatable\". Reports from industry and researchers indicate that the heartwood treatability is not uniform. It is still unclear what causes these differences. To increase its durability by means of impregnation would be a contribution to extend the use of both a natural and native material. The understanding of a potential pattern analog to latitudinal/longitudinal origin or other forest or wood properties could help to improve the impregnation by better material selection. Scots pine samples from 25 different sites in 6 countries in northern Europe have been collected throughout autumn and winter 2009/2010. A circle of varying size containing approximately 30 trees was set up in a representative site of each stand. All diameters were measured and arranged in three classes. Three trees of each class were chosen randomly. Only the middle and upper diameter classes were used for studying heartwood permeability. The small diameter class had insufficient heartwood width to be processed. Samples of 20 x 20 x 50 mm were cut and conditioned in a climate chamber. The samples were impregnated with a water-soluble monomer furfuryl alcohol solution in a standard pressure/vacuum process. Results showed a generally low permeability but a few samples had an unexpected high ration of filling. Further on, the samples with the highest and lowest treatability will undergo anatomical and chemical tests to explain these properties.

Sammendrag

There is great ecological, economic and social value within forest genetic resources – that is a fact. But so far, the true legal status of this resource has not been defined. This was the background for a meeting held in Vienna on 13 September 2010 which assembled forest and legal experts to discuss preliminary outputs from a NordGen project (2009-2010), initiated by representatives from Denmark, Finland, Norway and Sweden....

Sammendrag

The Pasvik River valley is the easternmost part of Norway, and borders to Finland and Russia. In Norway it is known for its wilderness and taiga forests. During the 1960-1970s most of the mature pine forests were harvested, and large areas of pine stands have been naturally regenerated. In addition, large areas are covered with birch. The Pasvik River valley and the adjoining areas are therefore important both as an area for growing timber resources and for recreation. However, these areas have also been exposed to air pollution from Russian smelting industry since the 1930s. In addition to sulphur dioxide, emissions consist of various heavy metals which contaminate the surroundings. The main pollution source is the huge nickel plant in the Russian city Nikel, located only 10 km from the Norwegian border. For a long time there was general concern for the quality of the forest ecosystems in these areas. This concern accelerated in the mid-1980s.

Sammendrag

Concentrations of dissolved organic carbon (DOC) in throughfall and soil solutions at 5, 15 and 40-cm depth were studied in 16 Norway spruce and two Scots pine plots throughout Norway between 1996 and 2006 (Wu et al. 2010a). Average DOC concentrations ranged from 2.3 to 23.1 mg/l and from 1.1 to 53.5 mg/l in throughfall water and soil solutions, respectively. Concentrations of DOC in throughfall and soil waters varied seasonally at most plots with peaks in the growing season. In contrast to reported positive long-term trends in DOC concentrations in surface waters between 1986 and 2003, soil water data from 1996 to 2006 showed largely negative trends in DOC concentrations and no significant trends in throughfall. However, regression analysis for individual sites, particularly at 5- and 15-cm soil depths, showed that DOC concentrations in soil water were significantly and negatively related to non-marine sulphate and chloride. Further studies were carried out on dissolved organic nitrogen (DON, Wu et al. 2010b). Dissolved organic nitrogen (DON) concentrations were significantly and positively correlated to DOC concentrations in throughfall (r2=0.72, p<0.0001) and soil water at 5, 15, and 40 cm (r2=0.86, 0.32, and 0.84 and p<0.0001, 0.04, and <0.0001, respectively). At most sites, the annual median DOC/DON ratio in throughfall ranged from 20.3 to 55.5, while values in soil water were higher, ranging from 24.5 to 81.3 but gradually decreasing with soil depth. DON concentrations varied seasonally in throughfall at many plots and in soil water at 5 cm depth at one plot only, with higher values in the growing season, but there was no noticeable seasonality at greater depth. The ratios of DOC/DON in soil water were significantly positively related to the C/N ratio in soil at the same depth. Above-ground litter input was the main factor having a significant, negative relationship to DOC/DON in soil water at all depths studied. This might reflect the effect of site conditions on both DOC/DON ratios and litter quantity. A comparison of DOC and DON concentrations and fluxes at two Norwegian sites (Birkenes and Hirkjølen) and five Finnish Level II plots (Tammela, Juupajoki, Uusikaarlepyy, Kivalo and Pallasjärvi) showed no obvious correlation between concentrations and site and stand properties such as growing season length, temperature, precipitation, stand age, or soil C or N. DOC concentrations in the O horizon could not be linked to N deposition. However, there were clear within-site seasonal trends, compatible with an effect of temperature on microbial activity.

Sammendrag

Seminatural grasslands and their species and populations are declining rapidly throughout Europe, bringing about a need for successful vegetation recreation methods. To maintain biodiversity and ecological services of seminatural grasslands, we need more nowledge on the relative performance of different recreation methods. In a replicated experiment in western Norway, we evaluated two hay transfer methods (hard or light raking of local hay), sowing of local seeds and natural regeneration for recreating seminatural grassland in a road verge. We compared treated trial plots with their respective donor plots (where hay and seeds were harvested) for three successive years by evaluating vegetation cover, species richness and species transfer rates, and vegetation dynamics analysed by Bray–Curtis compositional dissimilarity (BC) and GNMDS (Global NonMetric Multidimensional Scaling) ordination. Vegetation cover at the trial site exceeded that of donor sites in three years. Transfer rates of common species were high for seed sowing and both hay transfer procedures. Species composition in trial plots for all three treatments became significantly more similar to donor plots, but was still relatively dissimilar after three years. Natural regeneration showed a different temporal pattern and also had a higher successional rate. The species composition of the other treatments followed the same trajectory toward the donor sites as revealed by GNMDS. We found relatively small differences between the two hay transfer methods and seed sowing. Transfer of local hay therefore appears to be a successful method of establishing local species when recreating seminatural grasslands, and is generally cheaper than using commercial local seed mixtures.