Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2016
Forfattere
Eivind Vangdal Iren Lunde Knutsen Kristin Kvamm-LichtenfeldSammendrag
Det er ikke registrert sammendrag
Sammendrag
Nano-scale zero-valent iron (nZVI) has been conceived for cost-efficient degradation of chlorinated pollutants in soil as an alternative to e.g permeable reactive barriers or excavation. Little is however known about its efficiency in degradation of the ubiquitous environmental pollutant DDT and its secondary effects on organisms. Here, two types of nZVI (type B made using precipitation with borohydride, and type T produced by gas phase reduction of iron oxides under H2) were compared for efficiency in degradation of DDT in water and in a historically (>45 years) contaminated soil (24 mg kg−1 DDT). Further, the ecotoxicity of soil and water was tested on plants (barley and flax), earthworms (Eisenia fetida), ostracods (Heterocypris incongruens), and bacteria (Escherichia coli). Both types of nZVI effectively degraded DDT in water, but showed lower degradation of aged DDT in soil. Both types of nZVI had negative impact on the tested organisms, with nZVI-T giving least adverse effects. Negative effects were mostly due to oxidation of nZVI, resulting in O2 consumption and excess Fe(II) in water and soil.
Forfattere
Hege UlfengSammendrag
Det er ikke registrert sammendrag
Forfattere
Erik J. JonerSammendrag
Det er ikke registrert sammendrag
Forfattere
Lars Sandved DalenSammendrag
Det er ikke registrert sammendrag
Forfattere
Theo RuissenSammendrag
Det er ikke registrert sammendrag
Forfattere
Tage ThorstensenSammendrag
Det er ikke registrert sammendrag
Sammendrag
Due to more restrictive toxicological requirements and increased ecological awareness of consumers, wood preservatives containing harmful biocides are no longer desired on the market. Therefore, research on new environmentally friendly formulations is of great importance. One of the possible solutions is to develop new preservatives based on natural substances, which are harmless to humans, animals and the environment, while biologically active. The aim of the study was to develop new biocide-free preservative systems which increase wood resistance to wood-decaying fungi. The following silanes: [3-(2-Aminoethylamino)propyl]trimethoxysilane (AATMOS), (Aminopropyl)triethoxysilane (APTEOS), and (Aminopropyl)trimethoxysilane (APTMOS); caffeine, natural oils and potassium carbonate were chosen as components of new protective formulations, which were planned to be an alternative for traditionally used biocides. Samples of three different wood species (pine, spruce, and poplar) were treated with the new preservative systems and exposed to the brown-rot fungus Coniophora puteana and the white-rot fungus Coriolus versicolor according to EN-113 and EN-839 standards. The obtained results show that wood treated with the water-based formulation consisting of silanes and caffeine (2% caffeine + 5% AATMOS, 2% caffeine + 5% APTEOS) demonstrated the highest resistance to the test fungi. Wood mass loss after exposure to the decay fungi was 1%. All wood species treated with this formulation achieved index 1 (“very resistant”) within durability class acc. to the EN350 standard.
Forfattere
Attila Nemes Annette Dathe Matthew Patterson Daniel Gimenez Johannes Koestel Esther Bloem Nicholas Jarvis Helen FrenchSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag