Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Til dokument

Sammendrag

Actors who seek to restrict scientists’ academic freedom often believe they have legitimate reasons for doing so, and this belief often relies on misunderstandings regarding the nature and rationale of freedom in science. This chapter explains principles of freedom in science, why these principles matter, and how they can be protected when interests conflict. The authors distinguish between four freedoms in science: freedom of subject, freedom of source, freedom of interpretation, and freedom of speech. These freedoms each serve their scientific purpose and are – each to their own degree – important to the legitimacy of science. The authors argue that the freedoms of interpretation and speech, especially, must be absolute in science. This chapter delves particularly into the freedom of speech, because interested parties frequently attack this freedom when they fight over knowledge presented to the public. The authors draw on their experiences from the Norwegian scientific community to exemplify how problems of academic freedom may arise and eventually be solved.

Til dokument

Sammendrag

This study addresses changes in visual appearance of unpainted wood materials exposed outdoors. Specimens of aspen (Populus tremula), Norway spruce (Picea abies), untreated Scots pine (Pinus sylvestris), DMDHEU-modified Scots pine and acetylated Radiata pine (Pinus radiata) were exposed facing south in Ås, Norway for 62 weeks. During this period, mould growth coverage, lightness (L*) and the uniformity of the weather grey colour were assessed. Mould growth coverage was evaluated visually using a rating system. L* and the uniformity were evaluated using image analysis. The increase in mould rating of the wood materials developed in varying speed, but all specimens had reached the maximum rating after 42 weeks. Until then, the changes in L* correlated significantly with the mould rating. However, the specimens continued to darken after they had reached maximum mould rating. DMDHEU was the only material that obtained a more uniform colour as a consequence of the weathering.

Til dokument

Sammendrag

Mediterranean climate areas are home to highly relevant and distinctive agro-ecosystems, where sustainability is threatened by water scarcity and continuous loss of soil organic carbon. In these systems, recycling strategies to close the loop between crop production (and agrorelated industries) and soil conservation are of special interest in the current context of climate change mitigation. Pyrolysis represents a recycling option for the production of energy and biochar, a carbonaceous product with a wide range of environmental and agronomic applications. Considering that biochar functionality depends on both the original biomass and the pyrolysis conditions, we produced and characterized 22 biochars in order to evaluate their potential to sequester C and modify soil physicochemical properties. The pore size distribution was a function of the original biomass and did not change with the temperature of pyrolysis. The highest number of pores within the size 0.2−30 μm, relevant for plant available water retention, was reached at 600 °C. However, ideal pyrolysis conditions to optimize C stability and hydrologic properties was reached at 400 °C in woody derived biochars, as higher temperatures lead to a nontransient hydrophobicity. This study highlights relevant physicochemical properties of locally derived biochars that can be used to tackle specific challenges in Mediterranean agroecosystems.