Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2010
Sammendrag
Scenarios of climate changes indicate longer and more frequent spells of mild weather during winter in northern latitudes. De-hardening in perennial grasses could increase the risk of frost kill. In this study, the resistance to de-hardening of different grass species and cultivars was examined, and whether the resistance changes during winter or between years, was tested. In Experiment 1, two cultivars of timothy (Phleum pratense L.) and perennial ryegrass (Lolium perenne L.) of contrasting winter hardiness were grown under ambient winter conditions, transferred from the field in January and April 2006 to the laboratory for 9 d with controlled de-hardening conditions of 3°C, 9°C and 15°C. The timothy cultivars were tested at 3°C, 6°C and 9°C in a similar experiment (Experiment 2) in January 2007. De-hardening, measured as decrease in frost tolerance (LT50), was less in timothy than in perennial ryegrass and increased with increasing temperatures. The northern winter-hardy cultivar Engmo of timothy de-hardened more rapidly than the less-hardy cultivar Grindstad, but had higher initial frost tolerance in both experiments, whereas there was less difference between cultivars of perennial ryegrass in Experiment 1. Cultivar Grindstad of timothy lost all hardiness in early spring at all temperatures, whereas cultivar Engmo maintained some hardiness at 3°C. Cultivar Engmo de-hardened at a lower rate in 2007 than in 2006, in spite of similar frost tolerance at the start of de-hardening treatment in both years. This indicates that the rate of de-hardening was controlled by factors additional to the initial frost tolerance and that autumn weather conditions might be important for the resistance to de-hardening.
Forfattere
Sebastian EiterSammendrag
This article uses an activity-based understanding of landscape to explore values related to perceived land cover diversity. Perceptions within two user groups, members of landowner families and hiking tourists in a mountain area in western Norway, were related to a simultaneous land cover survey, and compared to experts' evaluations of land cover and to the aims of landscape protection in the area. Users perceived the area as being significantly more diverse and valuable than experts did, which stresses the importance of taking user perception into account in landscape protection and management. Some central landscape values were dependent upon land use outside the boundaries of the protected area. This illustrates that measures within structurally defined land units are not necessarily sufficient for maintenance of landscape values experienced by users. Land use in both respects, as an upholder of values and as a way of experiencing or perceiving them, should receive an increased role in the determination of management units.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Jon Anders Stavang Rolf Inge Pettersen Micael Wendell Knut Asbjørn Solhaug Olavi Junttila Roar Moe Jorunn E. OlsenSammendrag
Active gibberellin (GA(1)) is an important mediator of thermoperiodic growth in pea. Plants grown under lower day than night temperature (negative DIF) elongate less and have reduced levels of GA(1) compared with plants grown at higher day than night temperature (positive DIF). By comparing the wild type (WT) and the elongated DELLA mutant la cry(s), this study has examined the effect of impaired GA signalling on thermoperiodic growth, photosynthesis, and respiration in pea. In the WT a negative DIF treatment reduced stem mass ratio and increased both root mass ratio and leaf mass ratio (dry weight of specific tissue related to total plant dry weight). Leaf, root and stem mass ratios of la cry(s) were not affected by DIF. Under negative DIF, specific leaf area (projected leaf area per unit leaf dry mass), biomass, and chlorophyll content of WT and la cry(s) plants were reduced. Young, expanding leaves of plants grown under negative DIF had reduced leaf area-based photosynthetic capacity. However, the highest photosynthetic electron transport rate was found in fully expanded leaves of WT plants grown under negative DIF. Negative DIF increased night respiration and was similar for both genotypes. It is concluded that GA signalling is not a major determinant of leaf area-based photosynthesis or respiration and that reduced dry weight of plants grown under negative DIF is caused by a GA-mediated reduction of photosynthetic stem and leaf tissue, reduced photosynthesis of young, expanding leaves, and reduced growth caused by low temperature in the photoperiod.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Håvard Kauserud Einar Heegaard Mikhail Semenov Lynne Boddy Rune Halvorsen Leif Christian Stige Tim H. Sparks Alan C. Gange Nils Christian StensethSammendrag
Det er ikke registrert sammendrag
Forfattere
Monica Hauger Carlsen Bente Lise Halvorsen Kari Holte Siv Kjølsrud Bøhn Steinar Dragland Laura Sampson Carol Willey Haruki Senoo Yuko Umezono Chiho Sanada Ingrid Elisabet Barikmo Nega Berhe Walter C Willett KM Phillips David Jacobs Rune BlomhoffSammendrag
Open Access article distributed under the terms of Creative Commens Attribution License: http://creativecommons.org/licenses/by/3.0/
Sammendrag
Roseroot, Rhodiola rosea, is a perennial herbaceous plant of the family Crassulaceae. The rhizomes of 95 roseroot clones in the Norwegian germplasm collection were analysed and quantified for their content of the bioactive compounds rosavin, salidroside, rosin, cinnamyl alcohol and tyrosol using HPLC analysis. All five bioactive compounds were detected in all 95 roseroot clones but in highly variable quantities. The ranges observed for the different compounds were for rosavin 2.90-85.95mgg-1, salidroside 0.03-12.85mgg-1, rosin 0.08-4.75mgg-1, tyrosol 0.04-2.15mgg-1 and cinnamyl alcohol 0.02-1.18mgg-1. The frequency distribution of the chemical content of each clone did not reflect a certain geographic region of origin or the gender of the plant. Significant correlations were found for the contents of several of these bioactive compounds in individual roseroot clones. A low, but not significant correlation was found between AFLP markers previously used to study the genetic diversity of the roseroot clones and their production of the chemical compounds. The maximum level of rosavin, rosin and salidroside observed were higher than for any roseroot plant previously reported in literature, and the roseroot clones characterized in this study might therefore prove to be of high pharmacological value.
Forfattere
Anette Edvardsen Rune Halvorsen Ann Norderhaug Oddvar Pedersen Knut RydgrenSammendrag
Habitat specificity analysis provides a tool for partitioning landscape species diversity on landscape elements by separating patches with many rare specialist species from patches with the same number of species, all of which are common generalists and thus provide information of relevance to conservation goals at regional and national levels. Our analyses were based upon species data from 2201 patch elements in SE Norwegian modern agricultural landscapes. The context used for measuring habitat specificity strongly influences the results. In general the gamma diversity contribution and core habitat specificity calculated from the patch data set were correlated. High values for both measures were observed for woodland, pastures and road verges whereas midfield islets and boundary transitional types were ranked low, as opposed to findings in traditional, extensively managed agricultural landscapes. This is due to our study area representing intensively used agricultural landscape elements holding a more trivial species composition, in addition to ruderals being favoured by fertility and disturbance, a finding also being supported by the semi-natural affiliation index. Results obtained by use of checklist data from the same study area diverged from patch data. Caution is needed in interpretation of habitat specificity results obtained from checklist data, because modern agricultural landscapes contain several land types which are seldom surveyed by botanists, thus being under-represented in the data set. We propose the use of core habitat specificity and gamma diversity contribution in parallel to obtain a value neutral diversity assessment that addresses patch uniqueness and other properties of conservation interests.
Sammendrag
This review describes the effects of the current and emerging lighting technologies on plants, and the plant-mediated effects on herbivorous and beneficial arthropods in high-technology year-round greenhouse production, where light quality, quantity and photoperiod differ from the natural environment. The spectrum provided by the current lighting technology, high-pressure sodium lamp (HPSL), differs considerably from that of solar radiation. The major plantmediated effects on arthropods were predicted to result from (a) extended photoperiods and lower light integrals, (b) the attenuation of ultraviolet (UV) wavelengths, particularly UV-B, (c) the high red: far-red (R : FR) ratio and lower blue : red (B : R) in comparison with solar radiation and (d) the high proportion of yellowwavelengths during winter months. Of these light factors (a-d) (ceteris paribus), (a) and (b) were hypothesised to result in increased performance of herbivores in winter months, whereas the high R : FR ratio decreased herbivore performance or not affected it, at least when interlights are used. The predictions obtained on the basis of this review are also discussed in relation to the modifying factors prevailing in these production environments: enriched CO2 levels, high nutrient amounts, optimised irrigation and temperatures optimal for plants" needs. Based on the carbon/nitrogen and growth/differentiation balance theories, these modifying factors tend to produce plants that allocate most resources to growth at the expense of defensive secondary metabolism and physicochemical defensive structures. At the end, this review discusses knowledge gaps and future research prospects, in which light-emitting diodes, the emerging lighting technology, play an important role by enabling the targeted manipulation of plant responses to different wavelengths.