Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2017

Til dokument

Sammendrag

Co-existing species at the same trophic level often segregate with respect to diet, habitat use, or spatial distribution, reducing their direct competition for resources. However, temporal patterns in species-specific habitat use, for instance due to climatic variation, may affect the strength of interspecific interactions, and generate temporal variation in niche partitioning. We assessed temporal variation in habitat overlap between a wild ungulate, moose Alces alces, and two freeranging domestic ungulates, sheep Ovis aries and cattle Bos taurus, on a boreal forest range in southern Norway. We also calculated the distance between species’ realised niches, as well as the width of their realised niches to evaluate the extent of temporal niche partitioning under different diurnal weather conditions. Analyses of each habitat variable suggested complex relationships between species-specific habitat use, photoperiod, and weather, related to species-specific behaviour and activity patterns. We found shorter overall niche distance between moose and sheep, compared to moose and cattle, and shorter niche distances during day and night than during the twilight hours. The niche distance between moose and sheep was positively related to temperature during night, but negatively during day. Moreover, niche distance between moose and both sheep and cattle was negatively related to precipitation at daytime. Moose niche width was narrower in periods with short niche distance to sheep, while we did not find such pattern towards cattle. A lack of similar moose response to cattle could be attributed to lower niche overlap between moose and cattle. Our results suggest that temporal niche partitioning between moose and livestock breaks down under the weather conditions that are predicted to become more common as climate change, potentially increasing wildlife-livestock interactions in the future.

Til dokument

Sammendrag

1. Grassland diversity can support sustainable intensification of grassland production through increased yields, reduced inputs and limited weed invasion. We report the effects of diversity on weed suppression from 3 years of a 31-site continental-scale field experiment. 2. At each site, 15 grassland communities comprising four monocultures and 11 four-species mixtures based on a wide range of species' proportions were sown at two densities and managed by cutting. Forage species were selected according to two crossed functional traits, “method of nitrogen acquisition” and “pattern of temporal development”. 3. Across sites, years and sown densities, annual weed biomass in mixtures and monocultures was 0.5 and 2.0 t DM ha−1 (7% and 33% of total biomass respectively). Over 95% of mixtures had weed biomass lower than the average of monocultures, and in two-thirds of cases, lower than in the most suppressive monoculture (transgressive suppression). Suppression was significantly transgressive for 58% of site-years. Transgressive suppression by mixtures was maintained across years, independent of site productivity. 4. Based on models, average weed biomass in mixture over the whole experiment was 52% less (95% confidence interval: 30%–75%) than in the most suppressive monoculture. Transgressive suppression of weed biomass was significant at each year across all mixtures and for each mixture. 5. Weed biomass was consistently low across all mixtures and years and was in some cases significantly but not largely different from that in the equiproportional mixture. The average variability (standard deviation) of annual weed biomass within a site was much lower for mixtures (0.42) than for monocultures (1.77). 6. Synthesis and applications. Weed invasion can be diminished through a combination of forage species selected for complementarity and persistence traits in systems designed to reduce reliance on fertiliser nitrogen. In this study, effects of diversity on weed suppression were consistently strong across mixtures varying widely in species' proportions and over time. The level of weed biomass did not vary greatly across mixtures varying widely in proportions of sown species. These diversity benefits in intensively managed grasslands are relevant for the sustainable intensification of agriculture and, importantly, are achievable through practical farm-scale actions.

Til dokument

Sammendrag

Ungulate browsing results in important damages on the forests, affecting their structure, composition and development. In the present paper, we examine the occurrence of browsing damage in Norwegian forests, using data provided by the National Forest Inventory along several consecutive measurements (entailing the period 1995–2014). A portfolio of variables describing the stand, site and silvicultural treatments are analyzed using classification trees to retrieve combinations related to browsing damage. Our results indicate that the most vulnerable forest stands are young with densities below 1400 trees ha–1 and dominated by birch, pine or mixed species. In addition, stand diversity and previous treatments (e.g. thinnings) increase the damage occurrence and other variables, like stand size, could play a role on forest susceptibility to browsing occurrence although the latter is based on weaker evidence. The methods and results of our study can be applied to implement management measures aiming at reducing the browsing damages of forests.

Til dokument

Sammendrag

There has long been a claim that winter injuries of grass are a significant economic burden for golf courses in the Nordic countries. To confirm this claim, in 2015 the Norwegian Institute of Bioeconomy Research and the Norwegian Golf Federation, with support of the Scandinavian Turfgrass and Environment Research Foundation, conducted a net-based survey about winter injury in the five Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden). This comprehensive survey showed that total costs of repair of winter-injured greens and fairways together with lost revenue on golf courses in the Nordic countries can be at least €14 million. In a year with significant winter injuries, the average cost to repair the turf was between €3000 and €12,000 on 88% of the courses. The revenue loss after a winter with considerable injuries was less than €6000 at 50% of the courses, and 25% of the courses reported a loss between €6000 and €12,000 for these years. The causes of winter injuries varied depending on geography and grass species used on the greens. Biotic factors played a major role in the southern part of Scandinavia, and ice and water injuries were most devastating north of 60°N. This paper summarizes some of the answers from the respondents, including information about the dominating grass species on Nordic golf greens.

Til dokument

Sammendrag

Wood biomass for energy can be largely produced in northern Europe from forest land resulting from silvicultural practices and from agricultural land in the form of fast-growing plantations. The present paper estimates and compares the current regional potentials for wood biomass production attending to these sources. The data are based on spatialized estimates from previous models, largely based on empirical records concerning forest and plantation's productivity. The results show that 8.5 Mm3 of wood biomass can be produced annually from plantations when using 5% of the total available agricultural land, and 58.5 Mm3 from forest lands using current estimates of forest production. However, the results also show that a strategy for wood biomass resource management should be local rather than general: wood biomass potential from fast-growing plantations was larger in 19 regions than from forest resources (10 in Denmark, 6 in Norway and 3 in Lithuania) out of the 91 regions in the area included to this study. When considered together, northern Europe presents significant potential for wood biomass production for energy uses, and each country - and even region - should develop independent policy strategies of biomass generation in order to most efficiently realize their own potential for wood-based bioenergy.