Biography

My research interests in plant ecology and ecophysiology centre around trait based approaches, phenotypic plasticity, local adaptation, seedling ecology and functional ecology of roots. To pursue the impact of environmental drivers and especially multiple co-varying stressors on plant-soil systems, I use designed experiments to manipulate biotic and abiotic factors under controlled or semi-controlled and field conditions. I have a strong focus on applied aspects and recent projects include multifunctionality in urban constructed systems, restoration of ecological processes and functions, urban climate adaptation, and impact studies of invasive plant species. In turn, these contributions improve planning and management of urban green infrastructure and ecological restoration.

Read more

Abstract

To facilitate nutrient management and the use of manure as a feedstock for biogas production, manure is often separated into a solid and a liquid fraction. The former fraction is usually high in P and low in N, so when incorporated in the soil as fertilizer, it needs to be supplemented by N from, e.g., mineral fertilizers or nitrogen-fixing species. To explore strategies to manage N with solid-separated manure, we examined how the amount of digestate and the N:P ratio of pig digestate, i.e., manure that had partially undergone anaerobic digestion, affected the productivity of Westerwolds ryegrass and red clover in a pot experiment with one soil which was rich and another which was poor in plant nutrients. The soil and plant species treatments were combined with four doses of digestate, which gave plant available phosphorus (P) concentrations of 2, 4, 8, or 16 mg P100 g−1 soil. Ammonium nitrate was dosed to obtain factorial combinations of digestate amount and N:P ratios of 1.8, 4, 8, and 16. Clover was harvested once at the beginning of flowering (15 weeks after seeding), while Westerwolds ryegrass was allowed to regrow three times after being cut at the shooting stage (in total, 4 cuts, 6, 9, 12, and 15 weeks after seeding). Ryegrass yield increased by up to 2.9 times with digestate dosage. Interactions with the N:P ratio and soil type were weak. Hence, the effect of increasing the N:P ratio was additive across digestate dosages. Red clover biomass also increased by up to 39% with digestate dosage. Residual nutrients in the soil after red clover cultivation were affected by the initial differences in soil characteristics but not by digestate treatment or biomass of harvested red clover. A targeted N management is required to benefit from the P-rich digestate in grass cultivation, while the long-term effects of red clover culture on N input need further investigation.

To document

Abstract

Purpose The impact of winter moisture on root metabolism and root integrity has potential consequences for the geographical distribution of drought-adapted succulent species and for their long-term performance on green roofs. The interacting effects of soil characteristics and precipitation frequency on root mortality under winter conditions and the potential to grow new roots in spring were evaluated for six Sedum species under controlled conditions. Methods To test for the impact of soil moisture during winter on root regrowth potential in six Sedum species, we used a combination of two substrates with differing water-holding capacity and four contrasting watering regimes. Specially, for the fine and coarse substrates, total pore volume was 42 and 46 %, respectively, and maximum water-holding capacity (i.e. field capacity) was 0.50 and 0.33 kg water per L, respectively. The four watering treatments involved overhead watering to runoff (approx. 10 mm): once every second week, once a week, three times per week and three times per week with 1 cm standing water in trays from January to March 2019. Results It was found that winter soil moisture had no major impact on root mortality or root regrowth potential in spring. Root mortality was not affected by watering frequency and regrowth potential showed no directional response to increased watering frequency, although species-specific responses were involved. Root diameter did not differ between the substrates, but there were some differences between the species. Sedum rupestre had on average the thickest roots (0.17 mm), followed by S. acre, S. anglicum and S. sexangulare (0.15–0.16 mm), while S. album and S. hispanicum had the thinnest roots (0.12–0.13 mm). Moreover, effects of watering frequency on root mortality and regrowth potential were not influenced by soil water-holding capacity across species. We concluded that winter soil moisture had no negative effects on root performance within the range of treatments tested here. Conclusions Root response to transient waterlogging or moist but unsaturated soil may not be an important mechanism for determining the survival and distribution of temperate Sedum species during winter.

To document

Abstract

Understanding the chemical composition of our planet's crust was one of the biggest questions of the 20th century. More than 100 years later, we are still far from understanding the global patterns in the bioavailability and spatial coupling of elements in topsoils worldwide, despite their importance for the productivity and functioning of terrestrial ecosystems. Here, we measured the bioavailability and coupling of thirteen macro- and micronutrients and phytotoxic elements in topsoils (3–8 cm) from a range of terrestrial ecosystems across all continents (∼10,000 observations) and in response to global change manipulations (∼5,000 observations). For this, we incubated between 1 and 4 pairs of anionic and cationic exchange membranes per site for a mean period of 53 days. The most bioavailable elements (Ca, Mg, and K) were also amongst the most abundant in the crust. Patterns of bioavailability were biome-dependent and controlled by soil properties such as pH, organic matter content and texture, plant cover, and climate. However, global change simulations resulted in important alterations in the bioavailability of elements. Elements were highly coupled, and coupling was predictable by the atomic properties of elements, particularly mass, mass to charge ratio, and second ionization energy. Deviations from the predictable coupling-atomic mass relationship were attributed to global change and agriculture. Our work illustrates the tight links between the bioavailability and coupling of topsoil elements and environmental context, human activities, and atomic properties of elements, thus deeply enhancing our integrated understanding of the biogeochemical connections that underlie the productivity and functioning of terrestrial ecosystems in a changing world.