Biography

My research interests in plant ecology and ecophysiology centre around trait based approaches, phenotypic plasticity, local adaptation, seedling ecology and functional ecology of roots. To pursue the impact of environmental drivers and especially multiple co-varying stressors on plant-soil systems, I use designed experiments to manipulate biotic and abiotic factors under controlled or semi-controlled and field conditions. I have a strong focus on applied aspects and recent projects include multifunctionality in urban constructed systems, restoration of ecological processes and functions, urban climate adaptation, and impact studies of invasive plant species. In turn, these contributions improve planning and management of urban green infrastructure and ecological restoration.

Read more
To document

Abstract

Understanding the chemical composition of our planet's crust was one of the biggest questions of the 20th century. More than 100 years later, we are still far from understanding the global patterns in the bioavailability and spatial coupling of elements in topsoils worldwide, despite their importance for the productivity and functioning of terrestrial ecosystems. Here, we measured the bioavailability and coupling of thirteen macro- and micronutrients and phytotoxic elements in topsoils (3–8 cm) from a range of terrestrial ecosystems across all continents (∼10,000 observations) and in response to global change manipulations (∼5,000 observations). For this, we incubated between 1 and 4 pairs of anionic and cationic exchange membranes per site for a mean period of 53 days. The most bioavailable elements (Ca, Mg, and K) were also amongst the most abundant in the crust. Patterns of bioavailability were biome-dependent and controlled by soil properties such as pH, organic matter content and texture, plant cover, and climate. However, global change simulations resulted in important alterations in the bioavailability of elements. Elements were highly coupled, and coupling was predictable by the atomic properties of elements, particularly mass, mass to charge ratio, and second ionization energy. Deviations from the predictable coupling-atomic mass relationship were attributed to global change and agriculture. Our work illustrates the tight links between the bioavailability and coupling of topsoil elements and environmental context, human activities, and atomic properties of elements, thus deeply enhancing our integrated understanding of the biogeochemical connections that underlie the productivity and functioning of terrestrial ecosystems in a changing world.

To document

Abstract

Nature-based solutions are promising for climate adaptation and environmental management in urban areas, but urban conditions are stressful for vegetation. In particular, the interaction of drought and high temperatures may be detrimental. Guiding plant selection for urban greening with native species requires a far better knowledge of plant adaptations and stress acclimation. We tested the physiological responses of four candidate calcareous grassland species for green roofs and walls to the combined effects of drought and high temperatures under controlled conditions. The tested species proved relatively resistant to stress despite different strategies to protect the photosynthetic apparatus, maintain water balance, and repair damages. Based on the physiological responses, we rank the species in descending order of resistance to the stress factors tested: Trifolium medium > Festuca ovina > Carex flacca > Potentilla reptans, but all four can serve as potential candidates for green walls and roofs. Physiological stress screening of plant species for use on green roofs and walls supplements the habitat template approach to provide a stronger and wider base for prioritizations.

To document

Abstract

Plant rooting patterns in bioswales, raingardens and other vegetated infiltration systems are essential, as they contribute biopores which maintain the infiltration function over time. However, fluctuating hydrological conditions, ranging from flooded to drained, can have a heavy impact on plant rooting, as well as consequences for plant contributions to other ecosystem services and ecological functions. This study tested the biomass allocation to roots and the vertical root profile of four plant species, alone or in competition with a grass, and their responses to the experimental manipulation of soil hydrology in soil column microcosms. The hydrological regimes were combinations of flooded and drained conditions, respectively, including Wet cycles (72 and 96 h), Dry cycles (24 and 144 h), Wet-dry cycles (72 and 264 h), and Control group (watered twice per week). When the species were exposed to repeated wet-dry cycling hydrological regimes, we found a clear shift in vertical root distribution and shallower rooting in wetter regimes. It was also found that alongside this shallower rooting, there were no changes to total biomass and only moderate adjustments to biomass investment in roots. Overall, differences in rooting patterns between hydrological regimes and species were moderate when the dicot species were grown alone. The addition of the grass Festuca rubra contributed to a strong increase in total root mass density that evened out the differences in rooting patterns but also gave a deeper rooting. Accordingly, mixed species systems may be a robust approach to vegetated infiltration systems.

To document

Abstract

Urban green infrastructure is critical for providing a wide range of ecosystem goods and services that benefit the urban population. Past studies have suggested that multifunctionality concerning urban infrastructure services and functions is a prerequisite for targeting effective and impactful urban green infrastructure. Moreover, urban green infrastructure with multiple functions can offer socio-economic and environmental benefits. However, there has been a knowledge gap in the planning literature to elaborate multiple ecosystem functions in urban green infrastructure. In particular, existing methods and approaches are lacking for quantifying and monitoring such ecological services and biodiversity in urban green infrastructures at different spatial scales. Therefore, this research aims to review studies focusing on the multifunctionality concept in urban green infrastructure planning. The study highlights the current status and knowledge gaps through a systematic review. Our analysis revealed that current studies on green infrastructure multifunctionality have focused on five main themes: 1) planning methods for urban green infrastructure, 2) assessment approaches of urban green infrastructure, 3) ecosystem services and their benefits, 4) sustainability and climate adaptation, and 5) urban agriculture. The study found that the five themes are somewhat connected to each other. The study has revealed a knowledge gap regarding incorporating multifunctional green infrastructure in the planning principle. The results suggest at least five critical elements to ensure multiple functions in urban infrastructure. The elements are spatial distribution, optimal distance, integrated network, accessibility, and public participation and engagement. The study further recommends research directions for future analysis on green infrastructure multifunctionality that are critical for urban planning.

To document

Abstract

Roadsides, in particular those being species-rich and of conservation value, are considered to improve landscape permeability by providing corridors among habitat patches and by facilitating species' dispersal. However, little is known about the potential connectivity offered by such high-value roadsides. Using circuit theory, we modelled connectivity provided by high-value roadsides in landscapes with low or high permeability in south-central Sweden, with ‘permeability’ being measured by the area of semi-natural grasslands. We modelled structural connectivity and, for habitat generalists and specialists, potential functional connectivity focusing on butterflies. We further assessed in which landscapes grassland connectivity is best enhanced through measures for expanding the area of high-value roadsides. Structural connectivity provided by high-value roadsides resulted in similar patterns to those of a functional approach, in which we modelled habitat generalists. In landscapes with low permeability, all target species showed higher movements within compared to between grasslands using high-value roadsides. In landscapes with high permeability, grassland generalists and specialists showed the same patterns, whereas for habitat generalists, connectivity provided by high-value roadsides and grasslands was similar. Increasing the ratio of high-value roadsides can thus enhance structural and functional connectivity in landscapes with low permeability. In contrast, in landscapes with high permeability, roadsides only supported movement of specialised species. Continuous segments of high-value roadsides are most efficient to increase connectivity for specialists, whereas generalists can utilize also short segments of high-value roadsides acting as stepping-stones. Thus, land management should focus on the preservation and restoration of existing semi-natural grasslands. Management for enhancing grassland connectivity through high-value roadsides should aim at maintaining and creating high-value roadside vegetation, preferably in long continuous segments, especially in landscapes with low permeability.

Abstract

Green roofs are increasingly being used to meet the challenges of extreme rainfall and surface water management in cities and towns. Biochar is a locally sourced and carbon-negative material that can be used as a substrate component for green roofs. Here are some experiences NIBIO has gained in this area through research and testing of various concept.

To document

Abstract

Roadsides can harbour remarkable biodiversity; thus, they are increasingly considered as habitats with potential for conservation value. To improve construction and management of roadside habitats with positive effects on biodiversity, we require a quantitative understanding of important influential factors that drive both positive and negative effects of roads. We conducted meta-analyses to assess road effects on bird communities. We specifically tested how the relationship between roads and bird richness varies when considering road type, habitat characteristics and feeding guild association. Overall, bird richness was similar in road habitats compared to non-road habitats, however, the two apparently differ in species composition. Bird richness was lowered by road presence in areas with denser tree cover but did not differ according to road type. Richness differences between habitats with and without roads further depended on primary diet of species, and richness of omnivores was positively affected by road presence. We conclude that impacts of roads on bird richness are highly context-dependent, and planners should carefully evaluate road habitats on a case by case basis. This emphasizes the need for further studies that explicitly test for differences in species composition and abundance, to disentangle contexts where a road will negatively affect bird communities, and where it will not.

Abstract

Identification of stocktype attributes that speed up field establishment has potential to reduce rotation time of Christmas tree productions. Such morphological and physiological attributes can be targeted in the nursery production. This study tested the effects of container type and nursery seedling density on stocktype attributes at planting and the effects of these on field performance over two years in Abies lasiocarpa and A. nordmanniana Christmas tree stock. Nursery conditions had a considerable impact on seedling attributes at planting. Although sets of these correlated stocktype attributes contributed to forecast field performance, the predictive power was low. No simple relationships were found between plant biomass, stem diameter or height at planting and biomass at final harvest in either of the two species under the range of stocktype variation and field conditions tested. Contrary, stem diameter and stem height at planting explained some of the responses in stem diameter and height after two years in the field. Thus, any target seedling approach would have to be based on a combined set of stocktype attributes exploring more productive stocktypes. The differences observed between stocktypes were largely due to size differences and ontogenetic drift, and stocktypes converged towards a similar field phenotype over time.

Abstract

Organic amendments can improve grassland productivity. Timothy and tall fescue were sown on a sandy loam and a coarse sand at Særheim, Norway, in September 2016 and on a loamy sand at Skierniewice, Poland, in April 2017, and cut and fertilised according to normal practices for the two regions from 2017 to 2019. At both sites, 0.75 kg DM m-2 of either digested or undigested manure (the latter with or without 2.9 kg biochar m-2) were incorporated prior to sowing. On the coarse sand at Særheim, total seasonal tall fescue yield in 2018 was 46–60% higher in the organic amendment treatments, and total seasonal timothy yield in the digestate treatment was 97% higher, than in the control treatment for the same species with only mineral fertiliser. On the sandy loam at Særheim and the loamy sand at Skierniewice, none of the amendments resulted in significant yield increments. These results indicate a clear effect on soil type on grassland biomass response to organic amendments.

To document

Abstract

Semelparous annual plants flower a single time during their 1‐yr life cycle, investing much of their energy into rapid reproduction. By contrast, iteroparous perennial plants flower multiple times over several years, and partition their resources between reproduction and persistence. To which extent evolutionary transitions between life‐cycle strategies are internally constrained at the developmental, genetic and phylogenetic level is unknown. Here we study the evolution of life‐cycle strategies in the grass subfamily Pooideae and test if transitions between them are facilitated by evolutionary precursors. We integrate ecological, life‐cycle strategy and growth data in a phylogenetic framework. We investigate if growth traits are candidates for a precursor. Species in certain Pooideae clades are predisposed to evolve annuality from perenniality, potentially due to the shared inheritance of specific evolutionary precursors. Seasonal dry climates, which have been linked to annuality, were only able to select for transitions to annuality when the precursor was present. Allocation of more resources to above‐ground rather than below‐ground growth is a candidate for the precursor. Our findings support the hypothesis that only certain lineages can respond quickly to changing external conditions by switching their life‐cycle strategy, likely due to the presence of evolutionary precursors.

To document

Abstract

Standard succulent vegetation mixes developed mostly in temperate climates are being increasingly used on green roofs in different climate zones with uncertain outcome regarding vegetation survival and cover. We investigated vegetation on green roofs at nine temperate, cold, and/or wet locations in Norway and Sweden covering wide ranges of latitude, mean annual temperature, annual precipitation, frequencies of freeze-thaw cycles, and longest annual dry period. The vegetation on the roofs were surveyed in two consecutive years, and weather data were compiled from meteorological databases. At all sites we detected a significant decline in species compared to originally intended (planted/sown) species. Both the survival rate and cover of the intended vegetation were positively related to the mean annual temperature. Contrary to a hypothesis, we found that intended vegetation cover was negatively rather than positively related to mean annual precipitation. Conversely, the unintended (spontaneous) vegetation was favoured by high mean annual precipitation and low mean annual temperature, possibly by enabling it to colonize bare patches and outcompete the intended vegetation. When there is high mortality and variation in cover of the intended vegetation, predicting the strength of ecosystem services the vegetation provides on green roofs is difficult. The results highlight the needs for further investigation on species traits and the local factors driving extinction and colonizations in order to improve survivability and ensure a dense vegetation throughout the successional stages of a green roof.

To document

Abstract

Aim Root growth strategies may be critical for seeding survival and establishment under dry conditions, but these strategies and their plasticity are little known. We aim to document the ability of young grass seedlings to adjust their root system architecture, root morphology and biomass allocation to roots to promote water uptake and survival under progressive drought. Methods Seedlings growing in columns filled with sand and exposed to drought or well-watered controls were repeatedly harvested for determination of biomass fractions, root length, −architecture and -morphology in a greenhouse experiment. Allometric scaling exponents and standardised major axis regression were used to investigate allocation patterns. Results Young seedlings were able to sustain leaf turgor and functions during eight weeks of progressive drought through phenotypic plasticity of the primary root system producing deeper and simpler roots. Biomass allocation to roots decreased or did not respond, and other components of root morphology showed only moderate plasticity. Conclusion Our results suggest that morphological and architectural plasticity of the primary root system may well be key features for dehydration avoidance and survival in grass seedlings under moderate drought when allocation of biomass to roots and development of secondary roots are constrained.

To document

Abstract

PREMISE OF THE STUDY: Genetic differentiation in plant species may result from adaptation to environmental conditions, but also from stochastic processes. The drivers selecting for local adaptation and the contribution of adaptation to genetic differentiation are often unknown. Restoration and succession studies have revealed different colonization patterns for Brachypodium retusum, a common Mediterranean grass. In order to understand these patterns, we tested population differentiation and adaptation to different environmental factors. METHODS: Structured sampling of 12 populations from six sites and two soil types within site was used to analyze the spatial and environmental structure of population differentiation. Sampling sites differ in grazing intensity and climate. We tested germination and growth in a common garden. In subsets, we analyzed the differential response to stone cover, grazing and soil moisture. KEY RESULTS: We found significant differences among populations. The site explained population differentiation better than soil, suggesting a dominant influence of climate and/or genetic drift. Stone cover had a positive influence on seedling establishment, and populations showed a differential response. However, this response was not related to environmental differences between collection sites. Regrowth after clipping was higher in populations from the more intensively grazed Red Mediterranean soils suggesting an adaptation to grazing. Final germination was generally high even under drought, but germination response to differences in soil moisture was similar across populations. CONCLUSIONS: Adaptive population differentiation in germination and early growth may have contributed to different colonization patterns. Thus, the provenance of B. retusum needs to be carefully considered in ecological restoration.

To document

Abstract

Background and aims Layered profiles of designed soils may provide long-term benefits for green roofs, provided the vegetation can exploit resources in the different layers. We aimed to quantify Sedum root foraging for water and nutrients in designed soils of different texture and layering. Methods In a controlled pot experiment we quantified the root foraging ability of the species Sedum album (L.) and S. rupestre (L.) in response to substrate structure (fine, coarse, layered or mixed), vertical fertiliser placement (top or bottom half of pot) and watering (5, 10 or 20 mm week−1 ). Results Water availability was the main driver of plant growth, followed by substrate structure, while fertiliser placement only had marginal effects on plant growth. Root foraging ability was low to moderate, as also reflected in the low proportion of biomass allocated to roots (5–13%). Increased watering reduced the proportion of root length and root biomass in deeper layers. Conclusions Both S. album and S. rupestre had a low ability to exploit water and nutrients by precise root foraging in substrates of different texture and layering. Allocation of biomass to roots was low and showed limited flexibility even under water-deficient conditions.

To document

Abstract

Extensive green roofs have become a frequently used option for stormwater retention across manydifferent climates including cold and wet regions. Despite the extensive documentation of green rooftechnology for stormwater management, the knowledge about their function and potential use in wetand cold regions is deficient. Using historic data on daily temperature and precipitation in a green roofwater balance model coupled with the Oudin model of evapotranspiration (ET), we evaluated the effects ofmaximum green roof storage capacities (Smax) and ET on stormwater retention along climatic gradientsin Northern Europe. Large differences in potential annual stormwater retention were found betweenlocations, driven by differences in temperature and precipitation amounts. Highest retention in abso-lute values was found for the wettest locations, while the warmest and driest locations showed highestretention in percentage of annual precipitation (up to 58% compared to 17% for the lower range). Alllocations showed a considerable retention of stormwater during summer, ranging from 52% to 91%. Stor-age capacities accepting drought conditions once every 3.3–3.9 year were found to be about 25 mm inthe cold and wet locations increasing to 40–50 mm in the warmer and drier locations. Correspondingstorage capacities to prevent wilting of non-succulent vegetation was on average a factor of 1.5 larger(not including Sheffield and Malmö). Annual retention increased both with an increase in plant wateruse (specific crop factors, Kc) and with an increase in Smax, but was found to be more sensitive to changesin Kcthan to changes in Smax. Hence, ET was the limiting factor for green roof retention capacity in thecold and wet locations, but relatively large changes in evapotranspiration would be needed to have animpact on retention. The potential to use vegetation with higher water use to better restore the storagecapacity between storm-events in these regions was however limited by the risk of permanent wilting ofnon-succulent vegetation, even on the wettest locations. A considerable increase in roof storage capacityand substrate thickness would be required to reduce this risk; still the increase in stormwater retentionwould be marginal.

To document

Abstract

To predict how the function of urban vegetation and the provision of ecosystem services respond to combinations of natural and anthropogenic drivers, a better understanding of multiple stress interactions is required. This study tested combined effects of moderate levels of drought, soil salinity and exposure to diesel exhaust on parameters of physiology, metabolism, morphology and growth of Pinus sylvestris L. saplings. We found that plant responses were primarily dominated by single stressors and a few two-way interactions. Stressor combinations did not have considerable additional negative effects on plant performance compared to single stressors. Hence, synergistic and antagonistic interactions were rare and additive effects frequent. Drought cycles caused most negative effects, from chlorophyll a fluorescence and epicuticular wax content to growth responses, while soil salinity caused fewer negative effects but contributed to reduction in fine root growth and fluorescence parameters at low air contamination. Interestingly, the air contamination alone had only marginal effects on plant morphology and growth, but contributed an antagonistic effect, dampening the negative effect of drought and salinity on the maximum quantum efficiency of PSII photochemistry (Fv/Fm) and fine root biomass. Although, these effects were moderate, it appears that exhaust exposure had a cross-acclimation effect on plant responses to drought and salinity. We also found that salinity had a negative effect on the accumulation of particulate matter on shoots, illustrating that the plant stress situation can affect the provisioning of certain ecosystem services like pollution attenuation. These findings have implications for the understanding of the complex natural and anthropogenic stress situation of urban, and how to maintain the ecological functions and delivery of ecosystem services.

To document

Abstract

Nitrogen-limited ecosystems are threatened by extensive spread of broom (Cytisus scoparius (L.) Link), a European leguminous shrub that is invasive in several countries. The establishment of invading species may, however, be suppressed by competition from native vegetation. The neighbor impact of the grass Festuca rubra subsp. commutata Gaudin on the performance of C. scoparius was studied in a greenhouse experiment with different arrival order, under low and high nitrogen supply, and with or without inoculation of nitrogen-fixing bacteria. Aboveground biomass of both species was measured after a six-months establishment period, and after a five-months regrowth period. In both periods, presence of F. rubra reduced the performance of C. scoparius as indicated by negative neighbor-effect intensity indices (NIntA). During the establishment period the competitive impact of F. rubra was highest, when planted before C. scoparius, followed by synchronous and late planting. Inoculation with rhizobia and low fertilization decreased the competitive impact of F. rubra. After cutting and regrowth priority effects of F. rubra were still visible. Interaction between the two study species was not affected anymore by inoculation, but strongly by fertilization, with highest competitive impact of F. rubra on C. scoparius under high nitrogen fertilization. In both study periods biomass of C. scoparius was negatively correlated with biomass of F. rubra. Our study provides knowledge about competition processes, which help to improve conservation and restoration measures regarding the spread of C. scoparius. Early sowing of a native grass can help to suppress the invasive species at an early stage. Competitive impact of the grass might be strengthened by high nitrogen availability.

Abstract

Area-efficient constructed systems for stormwater management and bioretention may involve large fluc-tuations in subsurface water levels. Such fluctuations challenge vegetation by forcing roots to exploredeeper layers to access water during dry periods. In a controlled experiment, we studied growth pat-terns and the ability of Phragmites australis roots to track subsurface water level fluctuations of differingamplitude and frequency in substrates with contrasting water-holding capacity. We found that P. aus-tralis was able to adjust its rooting pattern to considerable subsurface water level fluctuations (to wellbelow 120 cm), but that substrate characteristics can restrict its ability to adjust to larger fluctuations.Fluctuation amplitude was the driving factor for plant growth and biomass allocation responses, whilesubstrate characteristics and fluctuation frequency were less important. When not exposed to large waterlevel fluctuations, P. australis grew larger shoots and only explored intermediate rooting depths. Therewas a negative relationship between root and rhizome biomass, showing a resource-based trade-off andshort-term costs of adjusting rooting patterns to large water level fluctuations. These results indicatethat P. australis is suited for systems with considerable subsurface water fluctuations, but constraints onits flexibility need to be investigated.

To document

Abstract

Invasive nitrogen-fixing plants drive vegetation dynamics and may cause irreversible changes in nutrient-limited ecosystems through increased soil resources. We studied how soil conditioning by the invasive alien Lupinus nootkatensis affected the seedling growth of co-occurring native plant species in coastal dunes, and whether responses to lupin-conditioned soil could be explained by fertilisation effects interacting with specific ecological strategies of the native dune species. Seedling performance of dune species was compared in a greenhouse experiment using field-collected soil from within or outside coastal lupin stands. In associated experiments, we quantified the response to nutrient supply of each species and tested how addition of specific nutrients affected growth of the native grass Festuca arundinacea in control and lupin-conditioned soil. We found that lupin-conditioned soil increased seedling biomass in 30 out of 32 native species; the conditioned soil also had a positive effect on seedling biomass of the invasive lupin itself. Increased phosphorus mobilisation by lupins was the major factor driving these positive seedling responses, based both on growth responses to addition of specific elements and analyses of plant available soil nutrients. There were large differences in growth responses to lupin-conditioned soil among species, but they were unrelated to selected autecological indicators or plant strategies. We conclude that Lupinus nootkatensis removes the phosphorus limitation for growth of native plants in coastal dunes, and that it increases cycling of other nutrients, promoting the growth of its own seedlings and a wide range of dune species. Finally, our study indicates that there are no negative soil legacies that prevent re-establishment of native plant species after removal of lupins.

Abstract

Plant responses to elevated CO2 are governed by temperature, and at low temperatures the beneficial effects of CO2 may be lost. To document the responses of winter cereals grown under cold conditions at northern latitudes, autumn growth of winter wheat exposed to ambient and elevated levels of temperature (+2.5°C), CO2 (+150 µmol mol-1), and shade (-30%) was studied in open-top chambers under low light and at low temperatures. Throughout the experiment, temperature dominated plant responses, while the effects of CO2 were marginal, except for a positive effect on root biomass. Increased temperature resulted in increased leaf area, total biomass, total root biomass, total stem biomass, and number of tillers, but also a lower content of total sugars and a weaker tolerance to frost. The loss of frost tolerance was related to the larger size of plants grown at elevated temperature. The 30% light reduction under shading did not affect the growth, sugar content, or frost tolerance of winter wheat. At the low temperatures found at high latitudes during autumn, the atmospheric CO2 increase is unlikely to enhance autumn growth of winter wheat to any significant extent, while a temperature increase may have important and major effects on its development and growth.

To document

Abstract

Twelve fertilizer/biostimulant products or product families were compared with mineral fertilizer in three two-year trials on USGA greens and sand-based football fields in southern Norway. Within each trial, all treatments were received the same amount of total nitrogen per year. Substitution of some of the mineral fertilizer with Gro-Power® improved turfgrass quality in one trial. Otherwise, the organic fertilizers and biostimulants producted results that were equal to or inferior to the control treatment. In conclusion, fertilization of sand-based golf greens and football fields ought to be based on light and frequent applications of mineral fertilizer throughout the growing season. Organic fertilizers and biostimulants can, at best, be supplements to such a fertilizer program.