Wenche Dramstad

Head of Department/Head of Research

(+47) 906 44 113
wenche.dramstad@nibio.no

Place
Ås O43

Visiting address
Oluf Thesens vei 43, 1433 Ås

Biography

I have a master in management of natural resources (1990) and a PhD in landscape ecology (1997) from the Norwegian University of Life Sciences (NMBU). As a landscape ecologist, I have a particular fascination for the content and composition of the landscape, how the landscape functions as a mosaic; the spatial distribution of different landscape elements, their quality and how they change.
 
I have since long worked on state and change in agricultural landscapes, with focus on how changes in spatial patterns can influence e.g. biodiversity or landscape perception. I have worked on the development and management of the Norwegian monitoring programme for agricultural landscapes (the 3Q-programme), and indicators suitable for monitoring landscape change.
 
I also know a little about bumblebees, spatial analyses and GIS, agriculture and land use planning. I am a member of the IALE-Europe Executive committee and I hold a 20% professor position at NMBU, where I teach landscape ecology (LAA370) and supervise students.

Read more
To document

Abstract

The main objective of this work was to analyse how increased harvesting for bioenergy production might affect other Ecosystem Services (ES) in two Norwegian municipalities (Ringsaker and Voss). The aim was to identify locations where synergies or conflicts between ES could be expected. The spatial distribution of eight different ES (3 provision, 3 regulation and 2 cultural services) was modelled using information provided by land use spatial databases and additional data sources. Model parameters were set by integrating existing research and expert knowledge. Maps showing the level of provision of ES were analysed using a moving window to analyse scale dependence in the spatial distribution of ES provision. Map algebra was then used to identify areas providing multiple ES, thus defining the most important areas on which to focus the management of both synergies and trade-offs. Finally, specific ‘binary bundles’ maps, where bioenergy provision was compared with each of the other ES, were developed. The methodology proved its utility to assess the compatibility of bioenergy uses with other services. This straightforward approach is readily replicable in other regions and can be used as a decision support tool for planning and designing provision areas, and to ensure sustainable forest management approaches.

Abstract

Mountain areas in Norway provide important resources for livestock grazing. These resources are crucial for agricultural production in a country with limited agricultural land and a climate and topography that restrict production of feed and food. A key contributor in the harvest of these resources has been mountain summer farming and outfield grazing in general. However, the use of mountainous grazing resources has been declining strongly for several decades with the regrowth of formerly open areas as a consequence. In contrast, recreational use, number of holiday cabins and associated infrastructure is rapidly increasing. Conflicts between recreational and agriculture use have received increasing attention in different media. We investigated the spatial patterns of cabin development and key grazing areas in Norwegian mountain areas, analysing data on livestock, cabins, and associated infrastructure. We found a large number of cabins and associated infrastructure within high-quality grazing areas indicating that the quality of grazing has not been adequately considered in the location of new cabins. Taking into consideration that cabin development seems not to decrease, the reduced availability of grazing resources may result in an increasing level of conflict and also impact food security in the long run.

To document

Abstract

Landscape ecology is repeatedly described as an applied science that can help reduce the negative effects of land-use and land-use changes on biodiversity. However, the extent to which landscape ecology is in fact contributing to planning and design processes is questioned. The aim of this paper is to investigate if and how landscape ecology can be integrated in a planning and design process, and to uncover possible problems that, e.g., landscape architects and planners, may face in such processes. Our conclusion, based on a case study from Asker municipality, Norway, is that such a landscape ecological approach has a lot to offer. However, it is difficult to exploit the potential fully for different reasons, e.g., biodiversity information tends to be specialized, and not easily used by planners and designers, and landscape ecological principles need an adaptation process to be applicable in a real-world situation. We conclude that for the situation to improve, landscape ecologists need to ease this process. In addition, we recommend collaboration across disciplinary boundaries, preferably with a common design concept as a foundation.

To document

Abstract

Renting agricultural land is a common practice in many countries. The possibility to rent land provides farmers with increased flexibility in terms of production volume. Land renting may have various effects on farmland management; however, results from studies analysing these are ambivalent. Farmland in the best possible state is a prerequisite for following up ambitions of feeding a growing population through a sustainable agriculture. Decisions regarding investments on farmland are key. The aim of this study is to increase the understanding of which factors are the most important ones for farmers’ decisions about investments on land they rent. We carried out a questionnaire survey followed by a multiple linear regression considering 34 variables. Although variables included in our model come out as significant in explaining investments, a large part of the variation is left unexplained (R2 = 0.22). Our interpretation of this result is that making investments is a complex decision. Non-economic factors impacting on farmers’ investment decisions such as trust or norms may contribute to the unexplained variation, but may only have been captured partly by our variables. Moreover, decisions regarding investments may not only vary among farmers but also among investments made by an individual farmer. The complex nature of the decisions on how to treat rented land makes it challenging for policymakers to develop measures targeted at farmers renting land. However, the finding that farmers are driving longer distances to rented land than they find acceptable deserves political attention. One potential policy implication may be strengthened incentives for land re-allotment. Re-allotment may address increasing distances and potential consequences such as reduced productivity and increased land abandonment. However, the sustainability of a re-allotment process needs to be considered carefully in terms of economic viability, ecological soundness and social responsibility.