Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

To document

Abstract

Timber structures in marine applications are often exposed to severe degradation conditions caused by mechanical loads and wood-degrading organisms. This paper presents the use of timber in marine environments in Europe from a wood protection perspective. It discusses the use of wood in coastline protection and archeological marine wood, reviews the marine borer taxa in European waters, and gives an overview of potential solutions for protection of timber in marine environments. Information was compiled from the most relevant literature sources with an emphasis on new wood protection methods; the need for research and potential solutions are discussed. Traditionally, timber has been extensively utilized in a variety of marine applications. Although there is a strong need for developing new protection systems for timber in marine applications, the research in this field has been scarce for many years. New attempts to protect timber used in marine environments in Europe have mainly focused on wood modification and the use of mechanical barriers to prevent colonization of marine wood borers. The importance of understanding the mechanisms of settlement, migration, boring, and digestion of the degrading organisms is key for developing effective systems for protecting timber in marine environments.

Abstract

Vi har alle hørt om problemene plast i havet kan føre med seg. Men plast havner også i jord, blant annet via avløpsslam, biogjødsel og fra plastbruk i landbruket. Akkurat hvor mye plast det er snakk om er imidlertid uvisst.

To document

Abstract

We grew young sweet cherry (Prunus avium L.) trees under controlled temperature and natural summer daylight conditions in order to study the control of flowering of the species. Two experiments with the cultivars ‘Lapins’ and ‘Van’, were conducted and compared with field results with the same cultivars at Ås in southeast Norway (59° 40′N, 10° 50′E, 90 m a.s.l.). Shoot growth increased with increasing temperature in the 12–21 °C range, but ceased in late summer (August) regardless of temperature conditions. A marked drop in temperature always induced an immediate cessation of growth. Under field conditions at Ås, both growth cessation and floral initiation took place by about 1 August. Low temperature (12–15 °C) significantly enhanced flowering of both cultivars compared with 21 °C, which tended to depress flower bud formation during the summer but stimulated the subsequent flower differentiation process. These results concur with earlier regression analyses, which revealed a close positive correlation between historical records of sweet cherry yields over a 40-year period in farmer’s fields in the fjord districts of western Norway and previous year August-September temperature, and a negative correlation with previous year July temperature. Practical implications of the results are discussed and it is suggested that inadequate temperature control in rain-protected cultivation in plastic tunnels might have negative consequences for next year’s flowering and yield.