Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Forfattere
Arne BardalenSammendrag
Det er ikke registrert sammendrag
Forfattere
Erik J. JonerSammendrag
Det er ikke registrert sammendrag
Sammendrag
Yield maps give farmers information about growth conditions and can be a tool for sitespecific crop management. Combine harvesters may provide farmers with detailed yield maps if there is a constant flow of a certain amount of biomass through the yield sensor. This is unachievable for grass seeds because the weight of the intake is generally too small to record the variation. Therefore, there is a need to find another way to make grass seed yield maps. We studied seed yield variation in two red fescue (Festuca rubra) fields with variation in management and soil fertility, respectively. We estimated five vegetation indices (VI) based on RGB images taken from a drone to describe yield variation, and trained prediction models based on relatively few harvested plots. Only results from the VI showing the strongest correlation between the index and the yield are presented (Normalized Excess Green Index (ExG) and Normalized Green/Red Difference Index (NGRDI)). The study indicates that it is possible to predict the yield variation in a grass field based on relatively few harvested plots, provided the plots represent contrasting yield levels. The prediction errors in yield (RMSE) ranged from 171 kg ha-1 to 231 kg ha-1, with no clear influence of the size of the training data set. Using random selection of plots instead of selecting plots representing contrasting yield levels resulted in slightly better predictions when evaluated on an average of ten random selections. However, using random selection of plots came with a risk of poor predictions due to the occasional lack of correlation between yield and VI. The exact timing of unmanned aerial vehicles (UAVs) image capture showed to be unimportant in the weeks before harvest.
Forfattere
Therese With BergeSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Arne Stensvand Katherine Ann Gredvig Nielsen Nina Trandem Vinh Hong Le Mirjana Sadojevic Anita SønstebySammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Anne Kjersti BakkenSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag