Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2010
Abstract
In 1955 the potato cyst nematode (PCN) was recorded for the first time in Norway. This detection resulted in extensive surveys and measures were implemented based on the statutory regulation of 1916. The first statutory regulation for PCN was put in power in 1956, and later amended in several occasions. These regulations prohibit the introduction and spread of PCN with soil and plant materials. Early control strategies included the use of chemical fumigants and resistant potato cultivars in infested fields, and surveys detected new infestations which were placed under quarantine regulations. The recognition of G. rostochiensis and G. pallida, their pathotypes enabled a more precise use of resistant cultivars. Commercial chemical fumigants, organophosphates or carbamate nematicides have not been used in Norway since the early 1970s. Today, non-virulent G. rostochiensis is managed by crop rotation, while infestations by G. pallida or virulent G. rostochiensis results in at least 40-years ban for growing potato. Most Norwegian potato cultivars have the resistance genes, Gro-1 (H1) from Solanum tuberosum ssp. andigena. During the preceding decades great emphasis has been placed on documenting freedom from PCN in the production of certified seed potatoes, certified seed potato are used in combination with crop rotations using non-host crops, alternating susceptible and resistant cultivars. These are important control measures, but not easy to implement in Norway due to restricted acreage suitable for long rotations. The safe use of resistant potato cultivars requires a better knowledge on the presence of species and pathotypes in potato fields. In order to improve our information of the occurrence of PCN a new national survey program for the principal potato districts has started. These surveys will complemented by information generated from a new research project dealing with: studies of the virulence of selected PCN populations, decline rates of nematode field population densities and infection potential over time of populations from fields placed under quarantine regulations. studies on the occurrence and pathogenicity of microbial antagonistic parasitic on PCN, and their potential of future management of PCN, the safe use of early potato cultivars as a practical control method, and the potential for using Solanum sisymbriifolium as a trap crop, distinguish the degree of resistance of selected potato varieties available on the Norwegian market, and initial studies of the PCN-Potato-Pathosystem. These expected results of this project possibly will improve the management of PCN, and may alleviate present regulatory restrictions.
Authors
Mekjell Meland Eva BirkenAbstract
No abstract has been registered
Authors
Eivind Vangdal Sigrid Flatland Ingvild Kristine MehlAbstract
No abstract has been registered
Abstract
Scenarios of climate changes indicate longer and more frequent spells of mild weather during winter in northern latitudes. De-hardening in perennial grasses could increase the risk of frost kill. In this study, the resistance to de-hardening of different grass species and cultivars was examined, and whether the resistance changes during winter or between years, was tested. In Experiment 1, two cultivars of timothy (Phleum pratense L.) and perennial ryegrass (Lolium perenne L.) of contrasting winter hardiness were grown under ambient winter conditions, transferred from the field in January and April 2006 to the laboratory for 9 d with controlled de-hardening conditions of 3°C, 9°C and 15°C. The timothy cultivars were tested at 3°C, 6°C and 9°C in a similar experiment (Experiment 2) in January 2007. De-hardening, measured as decrease in frost tolerance (LT50), was less in timothy than in perennial ryegrass and increased with increasing temperatures. The northern winter-hardy cultivar Engmo of timothy de-hardened more rapidly than the less-hardy cultivar Grindstad, but had higher initial frost tolerance in both experiments, whereas there was less difference between cultivars of perennial ryegrass in Experiment 1. Cultivar Grindstad of timothy lost all hardiness in early spring at all temperatures, whereas cultivar Engmo maintained some hardiness at 3°C. Cultivar Engmo de-hardened at a lower rate in 2007 than in 2006, in spite of similar frost tolerance at the start of de-hardening treatment in both years. This indicates that the rate of de-hardening was controlled by factors additional to the initial frost tolerance and that autumn weather conditions might be important for the resistance to de-hardening.
Abstract
No abstract has been registered
Authors
Nina OpstadAbstract
No abstract has been registered
Abstract
Plant responses to elevated CO2 are governed by temperature, and at low temperatures the beneficial effects of CO2 may be lost. To document the responses of winter cereals grown under cold conditions at northern latitudes, autumn growth of winter wheat exposed to ambient and elevated levels of temperature (+2.5°C), CO2 (+150 µmol mol-1), and shade (-30%) was studied in open-top chambers under low light and at low temperatures. Throughout the experiment, temperature dominated plant responses, while the effects of CO2 were marginal, except for a positive effect on root biomass. Increased temperature resulted in increased leaf area, total biomass, total root biomass, total stem biomass, and number of tillers, but also a lower content of total sugars and a weaker tolerance to frost. The loss of frost tolerance was related to the larger size of plants grown at elevated temperature. The 30% light reduction under shading did not affect the growth, sugar content, or frost tolerance of winter wheat. At the low temperatures found at high latitudes during autumn, the atmospheric CO2 increase is unlikely to enhance autumn growth of winter wheat to any significant extent, while a temperature increase may have important and major effects on its development and growth.
Abstract
Soil biological properties and CO 2 emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO 2 fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO 2 emission
Abstract
The Hungarian Detailed Soil Hydrophysical Database, called MARTHA ver2.0 has been developed to collect information on measured soil hydraulic and physical characteristics in Hungary. Recently this is the largest detailed national hydrophysical database, containing controlled information from a total of 15,005 soil horizons. Two commonly used pedotransfer functions were tested to evaluate the accuracy of the predictions on the MARTHA data set, representative for Hungarian soils. In general, the application of both examined pedotransfer functions (Rajkai, 1988; Wösten et al., 1999) was not very successful, because these PTFs are representative for other soil groups. The classification tree method was used to evaluate the effect of soil structure on the goodness of estimations. It was found that using the soil structure data the inaccuracies of soil water retention predictions are more explainable and the structure may serve as a grouping variable for the development of class PTFs.
Authors
Andreas C. Drichoutis Rudolfo M. Jr. Nayga Panagiotis LazaridisAbstract
No abstract has been registered