To document

Abstract

Powdery mildew, caused by the ascomycete Podosphaera aphanis, is an important disease of strawberry. A slightly modified version of a method using steam thermotherapy to rid diseases and pests from strawberry transplants was tested against strawberry powdery mildew. Experiments took place in Norway and Florida, with potted strawberry plants heavily infected with the fungus. Aerated steam treatments of the plants were carried out as follows: a pre-treatment with steaming at 37 °C for 1 h was followed by 1 h at ambient temperature before plants were exposed to steaming at 40, 42, or 44 °C for 2 or 4 h in Norway and 44 °C for 4 h in Florida. Following steaming, plants from the different treatments and the untreated control were kept apart and protected from outside contamination of powdery mildew by growing them in closed containers with over-pressure. On steamed plants, hyphae of P. aphanis were dead and without any new spore formation after treatments, independent of temperature or exposure time; however, up to 99% of the area infected with powdery mildew prior to treatments contained actively sporulating lesions on non-steamed plants. None of the new leaves formed after steaming had powdery mildew, whereas more than half of the new leaves on non-treated plants were infected by P. aphanis. This investigation clearly indicates that steam thermotherapy can eradicate powdery mildew from strawberry transplants, and this can be achieved at lower temperatures and exposure times than previously reported for other pathogens.

Abstract

Crown rot, caused by Phytophthora cactorum, is a devastating disease of strawberry. While most commercial octoploid strawberry cultivars (Fragaria × ananassa Duch) are generally susceptible, the diploid species Fragaria vesca is a potential source of resistance genes to P. cactorum. We previously reported several F. vesca genotypes with varying degrees of resistance to P. cactorum. To gain insights into the strawberry defence mechanisms, comparative transcriptome profiles of two resistant genotypes (NCGR1603 and Bukammen) and a susceptible genotype (NCGR1218) of F. vesca were analysed by RNA-Seq after wounding and subsequent inoculation with P. cactorum. Differential gene expression analysis identified several defence-related genes that are highly expressed in the resistant genotypes relative to the susceptible genotype in response to P. cactorum after wounding. These included putative disease resistance (R) genes encoding receptor-like proteins, receptor-like kinases, nucleotide-binding sites, leucine-rich repeat proteins, RPW8-type disease resistance proteins, and ‘pathogenesis-related protein 1’. Seven of these R-genes were expressed only in the resistant genotypes and not in the susceptible genotype, and these appeared to be present only in the genomes of the resistant genotypes, as confirmed by PCR analysis. We previously reported a single major gene locus RPc-1 (Resistance to Phytophthora cactorum 1) in F. vesca that contributed resistance to P. cactorum. Here, we report that 4–5% of the genes (35–38 of ca 800 genes) in the RPc-1 locus are differentially expressed in the resistant genotypes compared to the susceptible genotype after inoculation with P. cactorum. In particular, we identified three defence-related genes encoding wall-associated receptor-like kinase 3, receptor-like protein 12, and non-specific lipid-transfer protein 1-like that were highly expressed in the resistant genotypes compared to the susceptible one. The present study reports several novel candidate disease resistance genes that warrant further investigation for their role in plant defence against P. cactorum.

Abstract

Phytophthora cactorum has two distinct pathotypes that cause crown rot and leather rot in strawberry (Fragaria × ananassa). Strains of the crown rot pathotype can infect both the rhizome (crown) and fruit tissues, while strains of the leather rot pathotype can only infect the fruits of strawberry. The genome of a highly virulent crown rot strain, a low virulent crown rot strain, and three leather rot strains were sequenced using PacBio high fidelity (HiFi) long read sequencing. The reads were de novo assembled to 66.4–67.6 megabases genomes in 178–204 contigs, with N50 values ranging from 892 to 1,036 kilobases. The total number of predicted complete genes in the five P. cactorum genomes ranged from 17,286 to 17,398. Orthology analysis identified a core secretome of 8,238 genes. Comparative genomic analysis revealed differences in the composition of potential virulence effectors, such as putative RxLR and Crinklers, between the crown rot and the leather rot pathotypes. Insertions, deletions, and amino acid substitutions were detected in genes encoding putative elicitors such as beta elicitin and cellulose-binding domain proteins from the leather rot strains compared to the highly virulent crown rot strain, suggesting a potential mechanism for the crown rot strain to escape host recognition during compatible interaction with strawberry. The results presented here highlight several effectors that may facilitate the tissue-specific colonization of P. cactorum in strawberry.

To document

Abstract

The efficacy of currently available fungicides against apple scab, caused by the fungal pathogen Venturia inaequalis, was investigated in relation to when growers spray (ahead, during, or after rain) and how the spray reaches the target. The adaxial surface of individual leaves of potted trees were sprayed and then inoculated with ascospores of V. inaequalis, to establish dose-response curves for each fungicide. Discriminatory doses providing 50 and 90% symptom inhibition (EC50 and EC90, respectively) in sprays mimicking applications ahead of rain were used for experiments imitating alternative spray timings. Sprays were either applied during the spore germination phase or early or late after infection onset (either 336 or 672 degree-hours after inoculation, respectively), corresponding to grower spray schedules. Experiments were also carried out with sprays applied on the abaxial leaf surface to investigate fungicide efficacy through the leaf lamina. For all fungicides, the best efficacy was observed when sprays were applied during germination, followed by applications ahead of inoculation. Some products maintained equal or better efficacy at early infection, while efficacy in late infection dropped for all products, clearly indicating that this spray timing should be avoided. Some products with postinfection efficacy also showed translaminar efficacy. The close relationship found between EC50 of the active ingredients on potted trees and the label rate could help improve spraying decisions and reduce costs.

Abstract

The combination of preharvest treatments with calcium chloride and fungicides, and storage of maturity graded fruit were assessed in five European plum cultivars. At harvest, samples of fruit within a commercially suitable range in ripening were divided into two categories: less-ripe (tree ripe-) and more-ripe (tree ripe+). The fruit were stored for 10–14 days at 4 °C followed by 2–3 days at 20 °C before the assessment of fungal decay. If calcium chloride was applied six times each season, postharvest fruit decay was significantly reduced in four of nine experiments, with a total mean reduction of around 50%. Two calcium applications in combination with a fungicide treatment reduced decay by approx. 60% compared to the untreated in one experiment. In six of seven experiments there was no effect of preharvest fungicide applications. In six of 10 experiments, fruit of the category tree ripe- had fewer fruit with fungal decay after storage than the tree ripe+fruit. The higher incidence in the category tree ripe+fruit was primarily due to brown rot, Mucor rot, and blue mould. For the category tree ripe+, there was two to ten times more decay than on tree ripe- fruit after a simulated shelf-life period. To ensure low incidence of fungal decay, fruit of commercial harvest maturity may thus be separated in two ripening categories, one for rapid distribution to the market (tree ripe+) and another for extended distribution time (tree ripe-).

To document

Abstract

The effect of steam thermotherapy on Botrytis spp. populations in strawberry transplants was evaluated. Tray plants rooted in 0.2 L peat plugs of seasonal flowering cvs. Falco, Sonsation, and Soprano, and everbearing cvs. Favori and Murano were pre-treated with steam at 37 °C for 1 h, followed by 1 h at ambient temperature and air humidity, and then 2 or 4 h steam treatment at 44 °C. Except for one cultivar with a slight reduction in yield, there were no negative effects on plant performance. Compared to untreated transplants, mean incidence of Botrytis on the five cultivars was reduced by 43 and 86% with the 2 and 4 h treatments, respectively. Within cultivars the reduction was significant in 2 and 3 experiments following the 2 and 4 h treatments, respectively. Sclerotia from four different isolates of Botrytis were subjected to treatment including 4 h of steam thermotherapy and subsequently tested for viability. Following 14 days of incubation, 90 to 100% (mean 97%) of treated sclerotia failed to produce mycelial growth compared with untreated sclerotia, which all germinated and produced mycelia. Botrytis isolates recovered from both treated and untreated strawberry transplants were tested for resistance to seven fungicides, including boscalid, fenhexamid, fludioxonil, fluopyram, pyraclostrobin, pyrimethanil and thiophanate-methyl. Multiple fungicide resistance was common; 35.5% of isolates were resistant to fungicides from at least three FRAC groups. Results indicate that steam thermotherapy treatment strongly reduces populations of Botrytis spp., including fungicide-resistant strains, in strawberry transplants with negligible negative impacts on the transplants.

To document

Abstract

Control of grey mould, caused by Botrytis spp., is a major challenge in open field strawberry production. Botrytis was isolated from plant parts collected from 19 perennial strawberry fields with suspected fungicide resistance in the Agder region of Norway in 2016. Resistance to boscalid, pyraclostrobin and fenhexamid was high and found in 89.1%, 86.0% and 65.4% of conidia samples, respectively. Multiple fungicide resistance was common; 69.6% of conidia samples exhibited resistance to three or more fungicides. Botrytis group S and B. cinerea sensu stricto isolates were obtained from 19 and 16 fields, respectively. The sdhB, cytb, erg27 and mrr1 genes of a selection of isolates were examined for the presence of mutations known to confer fungicide resistance to boscalid, pyraclostrobin, fenhexamid and pyrimethanil plus fludioxonil, respectively. Allele-specific PCR assays were developed for efficient detection of resistance-conferring mutations in cytb. Among B. cinerea isolates, 84.7%, 86.3% and 61.3% had resistance-conferring mutations in sdhB, cytb and erg27, respectively. A triplet deletion in mrr1, resulting in ΔL497, commonly associated with the multidrug resistance phenotype MDR1h, was detected in 29.2% of Botrytis group S isolates. High frequencies of resistance to several fungicides were also detected in Botrytis from both imported and domestically produced strawberry transplants. Fungicide resistance frequencies were not different among fields grouped by level of grey mould problem assessed by growers, indicating factors other than fungicide resistance contributed to control failure, a fact that has important implications for future management of grey mould.

Abstract

In this study, we investigated if a steam treatment program used to produce disease-free strawberry transplants has the potential to also eliminate strawberry mite (Phytonemus pallidus) and two-spotted spider mite (Tetranychus urticae). Crowns of strawberry plants collected in a commercial field, containing young, folded leaves with all life stages of P. pallidus, and strawberry leaf discs on water agar with T. urticae with non-diapausing adult females and eggs from a laboratory rearing, were exposed to warm aerated steam in a steam cabinet in a series of four experimental runs over 2 years. The steam treatments constituted of a 1-h pre-treatment with 37 °C steam followed by a 1-h recovery period at 21–25 °C, and then a main steam treatment at 44 °C for either 2, 4 (both P. pallidus and T. urticae) or 6 h (the more heat tolerant T. urticae only). After steaming, the plant material with P. pallidus or T. urticae were incubated at 21–25 °C until survival was assessed after 1–6 days, depending on the mite species and life-stage. Non-steamed plant material with mites was used as controls. The 4-h treatment killed all P. pallidus eggs, larvae and adults, and the 2-h treatment killed all individuals in all three stages except for one egg in one of the runs. There were no or minor effects of the steam treatments on T. urticae adult and egg survival. Based on these results, the tested steam treatments may be used to eliminate the strawberry mite but not the two-spotted spider mite from strawberry planting material.

To document

Abstract

Strawberry powdery mildew, caused by Podosphaera aphanis, can be particularly destructive in glasshouse and plastic tunnel production systems, which generally are constructed of materials that block ultraviolet (UV) solar radiation (about 280 to 400 nm). We compared epidemic progress in replicated plots in open fields and under tunnels constructed of polyethylene, which blocks nearly all solar UV-B, and two formulations of ethylene tetrafluoroethylene (ETFE), one of which contained a UV blocker and another that transmitted nearly 90% of solar UV-B. Disease severity under all plastics was higher than in open-field plots, indicating a generally more favorable environment in containment structures. However, the foliar severity of powdery mildew within the tunnels was inversely related to their UV transmissibility. Among the tunnels tested, incidence of fruit infection was highest under polyethylene and lowest under UV-transmitting ETFE. These effects probably transcend crop, and the blocking of solar UV transmission by glass and certain plastics probably contributes to the widely observed favorability of greenhouse and high-tunnel growing systems for powdery mildew.

To document

Abstract

Meldugg, forårsaket av soppen Oidium anacardii, er en viktig sykdom ved produksjon av cashewnøtter. I dette arbeidet er det sett på effekten av ‘bio-spray’ (en blanding av utvalgte mikoorganismer og sirup fra casheweple og/eller sukkerrør) mot meldugg og for å finne den optimale konsentrasjonen av middelet mot sykdommen. To forsøk ble gjennomført; i et skygge-hus med småplanter av cashew og på friland i en ordinær planting. Det var fire behandlinger med ulike konsentrasjoner av bio-spray (10%, 15%, 20% and 25%), i tillegg til behandlinger med sirup (uten mikroorganismer tilsatt) i 5% konsentrasjon eller standard fungicider. Et kontroll-ledd var helt ubehandlet, mens et annet var behandlet med vann. I skyggehuset ble plantene inokulert med smitte fra andre planter, mens forsøkene på friland ble lagt i et felt som tidligere hadde hatt mye meldugg. I skyggehuset ble det foretatt to behandlinger med 15 dagers mellomrom bortsett fra fungicid som ble brukt en gang. På friland ble det foretatt fem behandlinger med enten bio-spray, sirup eller vann med 15 dagers mellomrom, mens standard fungicidbehandling ble utført tre ganger med 21 dagers mellomrom. Prosent blad med angrep og angrepsgrad ble registrert i skyggehuset. På friland ble i tillegg fenologisk stadium og avlingseffekter undersøkt. I skyggehuset ble det lite angrep av meldugg, mens det var betydelig angrep på friland. Det såkalte arealet under sykdomskurven (AUDPC) viste at de ulike konsentrasjonene av bio-spray ikke reduserte meldugg sammenlignet med kontroll-leddene. Det var noe bedre effekt av 15% konsentrasjon sammenlignet med 25%. Behandling med fungicider var signifikant bedre enn de andre behandlingene og var det eneste forsøksleddet som gav god kontroll av meldugg.

To document

Abstract

We designed and deployed an apparatus to apply UV light for suppression of powdery mildew in open field production of strawberry. The unit was evaluated in a commercial production field for one season, and for two additional seasons in open field research plots at the University of Florida Gulf Coast Research and Education Center. The apparatus contained two 180-cm-long hemicylindrical arrays of twenty 55-W low-pressure discharge UV-C lamps (operated at 30 W; peak wavelength = 254 nm) backed by polished aluminum reflectors covering two adjacent beds of the strawberry planting. The lamp arrays were suspended within a steel carriage that was tractor-drawn through the planting at 2.3, 4.6, and 5.6 km h−1. Nighttime applications of UV-C at doses ranging from 65 to 170 J⋅m−2 either once or twice weekly provided suppression of foliar and fruit disease that was consistently equal to or better than that provided by a commercial calendar-based fungicide spray program.

To document

Abstract

In a number of pathosystems involving the powdery mildews (Erysiphales), plant stress is associated with decreased disease susceptibility and is detrimental to pathogen growth and reproduction. However, in strawberry, anecdotal observations associate severe powdery mildew (Podosphaera aphanis) with water stress. In a 2017 survey of 42 strawberry growers in Norway and California, 40 growers agreed with a statement that water-stressed strawberry plants were more susceptible to powdery mildew compared with nonstressed plants. In repeated in vitro and in vivo experiments, we found that water stress was consistently and significantly unfavorable to conidial germination, infection, and increases in disease severity. Deleterious effects on the pathogen were observed from both preinoculation and postinoculation water stress in the host. Soil moisture content in the range from 0 to 50% was correlated (R2 = 0.897) with germinability of conidia harvested from extant colonies that developed on plants growing at different levels of water stress. These studies confirm that P. aphanis fits the norm for biotrophic powdery mildews and hosts under stress. Mild water stress, compared with a state of optimal hydration, is likely to decrease rather than increase susceptibility of strawberry to P. aphanis. We believe it is possible that foliar symptoms of leaf curling due to diffuse and inconspicuous infection of the lower leaf surfaces by P. aphanis could easily be mistakenly attributed to water stress, which we observed as having a nearly identical leaf curling symptom in strawberry.

To document

Abstract

Powdery mildews can be controlled by brief exposure to ultraviolet (UV) radiation with devastating effect on their developmental stages including conidia germination. The treatment effect can be impaired by subsequent exposure to UV-A/blue light. UV-A/blue light-activated photolyase may be responsible for this and therefore we tested the function of three cryptochrome/photolyase family (CPF)-like genes (OINE01015670_T110144, OINE01000912_T103440, and OINE01005061_T102555) identified in the obligate biotrophic fungus Pseudoidium neolycopersici, the cause of tomato powdery mildew. A photolyase-deficient mutant of Escherichia coli transformed with coding sequence of OINE01000912_T103440 and exposed to brief (UV)-C treatment (peak emission at 254 nm) showed photoreactivation and cell survival when exposed to subsequent blue light, indicating complementation of photolyase activity. In contrast, the same photolyase-deficient E. coli transformed with the coding sequences of other two CPF-like genes did not survive this treatment, even though their expression were confirmed at protein level. This confirmed that OINE01000912_T103440 is a gene encoding photolyase, here named PnPHR1, with functionality similar to the native photolyase in E. coli, and classified as a class I cyclobutane pyrimidine dimer (CPD) photolyase. Modeling of the 634-amino acid sequence of PnPHR1 suggested that it is capable of binding flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF). However, spectroscopic data of the protein produced in an E. coli expression system could only reveal the presence of a reduced form of FAD, i.e., FADH– as an intrinsic chromophore. Within the tested wavelength range of 365–525 nm, the survival of photolyase-deficient mutant E. coli transformed with PnPHR1 showed a broad action spectrum from 365 to 454 nm. This was very similar to the previously characterized action spectrum for survival of P. neolycopersici conidia that had been treated with UV-C. Quantitative RT-PCR revealed that the expression of PnPHR1 in P. neolycopersici conidia was induced by UV-C, and peak expression occurred 4 h after brief UV-C treatment. The expression of PnPHR1 was repressed when incubated in red light after the UV-C treatment, but not when incubated in UV-A/blue light. The results may explain why the disease-reducing effect of short wavelength UV is impaired by exposure to UV-A and blue light.

Abstract

In integrated pest management (IPM), the goal is to keep the impact of damaging agents below a threshold level with reduced pesticide use. The present review is focusing on IPM of fungal diseases and Phytophthora root rot in Norwegian Christmas tree plantations. Healthy transplants are of vital importance to give the production a good establishment. Sanitation of diseased material and weeds is also very important in IPM. Management strategies will vary with the disease-causing agent in question, therefore, correct identification is necessary. The major pathogens are within the kingdom’s Fungi (e.g. Neonectria neomacrospora) and Chromista (e.g. Phytophthora spp.). They depend on relatively high humidity or free moisture to spread and infect. Any factors diminishing the duration of wet conditions will, therefore, reduce the disease pressure. Efficient weed management in Christmas tree fields will increase air circulation and thereby ensure a quicker drying after precipitation. Furthermore, certain weed species are host plants for rust fungi on Christmas trees, and thus, removal of the alternate host is a highly relevant control strategy. In Norway, fungicide use in Christmas trees is limited and only recommended during the short period from bud break to fully elongated shoots, generally the most vulnerable period concerning fungal attacks.

Abstract

Infections of Neonectria ditissima, the cause of European fruit tree canker, may be initiated during propagation. In a survey of 19 commercial apple orchards in southern Norway in the year of planting or the following year, the graft-union area of 15,270 trees was examined. The disease was found in 53% of the orchards, at a low incidence (<10%) with two exceptions (13 and 42%). Scion wood from mother trees with no, a few or several cankers were used to propagate trees that were surveyed for up to 38 months. In total 20 out of 1116 (1.8%) trees developed canker. The higher the number of cankers was on the mother trees, the higher was the number of trees developing canker after grafting. Infections developed on both cultivars (Discovery, Summerred) and all three rootstocks (Antonovka, B9, M9), but more so on grafted than T-budded trees, and more in 2015 than in 2014. When the scion wood was inoculated at the time of T-budding or grafting, disease development went faster and to a higher incidence on T-budded (94%) than on grafted trees (50%). Dipping the scion wood end in a spore suspension prior to grafting resulted in more infections than when a suspension droplet was placed on the bud and bark surface of the scion wood after grafting. The present investigation documents that scion wood may harbour inoculum of N. ditissima. Furthermore, infections may be initiated at time of propagation, and management practices of both scion wood production and nurseries should encounter that fact.

To document

Abstract

In many areas where spring is wet, fungicides are applied in relation to rain events that trigger ejection of ascospores of Venturia inaequalis, which cause primary infections of apple scab. Past studies established the rate of ejection during rain in relation to light and temperature, and determined the wetting time required for infection. Simulation software uses this information to calculate risk and help time sprays accordingly. However, the distribution of the infection time required by a population of spores landed on leaves was never studied, and assumptions were used. To estimate this, we inoculated ascospores of V. inaequalis on potted trees at different temperatures for specific wetting times. Lesions were enumerated after incubation. Lesions increased with wetness time and leveled off once the slowest spores infected the host, closely matching the monomolecular model. Wetness hours were best adjusted for temperature using the Yin equation. The minimum infection time on the youngest leaves was about 5 h, matching results from previous studies, whereas half the lesions appeared after 7 h of infection. Infection times for leaves with ontogenic resistance were longer. Our results improve current software estimates and may improve spraying decisions.

Abstract

Sweet cherry fruit delivered at three packinghouses over two years in southern Norway was assessed for postharvest fungal decay after being graded in a line with water containing 2 ppm chlorine, in comparison with non-graded fruit. Assessment of decay was carried out after cold storage of the fruit for ten days at 2°C, followed by two days at 20°C. In mean of all assessments, there was no difference in total decay after storage between fruit graded in a water line or non-graded fruit, however, the first year there was a higher total incidence of fruit decay on water-graded fruit after storage. The grading-water was not changed during the day, but time of grading during the day did not seem to influence the amount of decay. Mucor rot and grey mould accounted for 80 and 19%, respectively, of the decay averaged for all assessments, and there was no significant difference in decay of the two diseases if graded in water or not. For blue mould and brown rot, the incidence was lower in water graded fruit, while it was the opposite for Cladosporium rot. On average, fruit decaying fungi developed on PDA from 57 and 17% of water samples from grading lines in the two years, respectively. On pieces with filter paper wetted in different locations of the grading line, 87% contained fruit decaying fungi when placed on PDA, and Mucor sp. was the most prevalent pathogen. Fruit cooled in a hydro-cooler containing either 2, 10 or 50 ppm chlorine, all reduced decay with about 75% compared to non-chlorinated water. Although the grading water may contain spores of pathogenic fungi, the present results indicated that water containing 2 ppm chlorine does not significantly increase fruit decay. Thus, only a slight chlorination of grading water may be sufficient to reduce postharvest contamination.

Abstract

Introduction and purpose: The ability of apple rootstocks to become infected by Neonectria ditissima, the cause of European canker, was studied over two years. Materials and methods: Rootstocks B9 and M9 with a size suitable for grafting (6-10 mm stem diameter, termed rootstocks), and smaller sized rootstocks (<5 mm stem diameter, termed transplants) of B9, M9, M26, MM106 and Antonovka were inoculated with N. ditissima at different times, either with contaminated map pins or with spore suspensions. In addition, the rootstocks were either defeathered (side shoots removed), topped (top shoot headed) or both, to create wounds that would normally occur during propagation, while wounds on transplants were made by removing leaves. Results and discussion: One month after inoculation, slightly sunken canker lesions had developed around the inoculation points of the map pins or wounds. No lesions developed on the non-inoculated controls. Map pin inoculation resulted in 30% to 89% infection and spore suspension sprayed on wounds from 5% to 45% infection. When the cankered areas were split open, brown lesions with necrotic tissue due to infection by N. ditissima appeared. The transplants of M9, M26 and MM106 inoculated with contaminated map pins in 2014 developed necrosis on 40% to 67% of the plants, but there were no differences in the incidence or severity among the different types. On the transplants of B9, Antonovka and M9 inoculated in 2015, there was more necrosis on B9 (42%) than on Antonovka (11%) and more sporulating lesions on B9 (29%) than on M9 (9%) or on Antonovka (4%). Conclusion: It can be concluded that rootstocks used for apple trees may become infected by N. ditissima, and wounds should thus be protected during propagation.

To document

Abstract

Cultivars and cultivating methods for organic strawberry production were studied in experiments in open fields and high plastic tunnels during four cropping seasons in southern Norway. In open fields, flowers and fruits were attacked by grey mould when the flowering and harvest seasons were wet, and marketable yield was reduced by up to 20%. Production in high tunnels showed a potential of high yields of fruits of good quality when strawberry powdery mildew was controlled. Berry size varied significantly among the cultivars. ‘Frida’ had the largest fruits followed by ‘Sonata’ and ‘Florence’, while ‘Polka’, ‘Korona’ and ‘Iris’ had the smallest fruits. All cultivars yielded well, but due to fruit decay caused by grey mould the marketable yield was significantly reduced, especially in open field. Grey mould was the most important factor influencing marketable yields. Fruits from matted rows were largest, while the highest yield was obtained on woven polyethylene. There were no effects of mulching methods on marketable yield or the amount of fruits with grey mould. High tunnels with good control of pests and diseases showed a potential of high and stable yields of good quality.

To document

Abstract

Nighttime ultraviolet (UV) radiation, if applied properly, has a significant potential for management of powdery mildews in many crop species. In this study, the role of growth light duration, irradiance, a combination of both (daily light integral) and light spectral quality (blue or red) on the efficacy of UV treatments against powdery mildew caused by Podosphaera xanthii and the growth performance of cucumber plants was studied in growth chambers. Increasing daily light integral provided by high-pressure sodium lamps (HPS) decreased efficacy of nighttime UV treatments against P. xanthii, but it increased plant growth. Furthermore, the efficacy of nighttime UV decreased when day length was increased from 16 to 20 h at a constant daily light integral. The efficacy of nighttime UV increased if red light was applied after UV treatment, showing the possibility of day length extension without reducing the effect of UV. Increasing the dose of blue light during daytime reduced the efficacy of nighttime UV in controlling the disease, whereas blue deficient growth light (< 6% of blue) caused UV mediated curling of young leaves. Furthermore, application of blue light after nighttime UV reduced its disease control efficacy. This showed the importance of maintaining a minimum of blue light in the growth light before nighttime UV treatment. Findings from this study showed that optimization of nighttime UV for management of powdery mildew is dependent on the spectral composition of the photosynthetically active radiation.

Abstract

Production of inoculum of Colletotrichum acutatum from both previously infected and overwintered tissue, as well as newly developed plant tissue of sour cherry (Prunus cerasus), was studied in southern Norway. Plant parts were sampled from commercial, private, or research orchards, and incubated for 2 to 14 days (time depended on tissue type) in saturated air at 20°C. In early spring, abundant sporulation was found on scales of overwintered buds and shoots. A mean of 35% infected buds in four cultivars was observed, with a maximum of 72% of the buds infected in one of the samples. Over 3 years, the seasonal production of overwintered fruit and peduncles of cv. Fanal infected the previous year was investigated. In all three years, the infected plant material was placed in the trees throughout the winter and the following growing season; in two of the years, fruit and peduncles were also placed on the ground in the autumn or the following spring. Old fruit and peduncles formed conidia throughout the season, with a peak in May and June. Spore numbers declined over the season, but the decline was more rapid for plant material on the ground than in the trees. On average over 2 years, 68.7, 24.0, or 7.3% of the inoculum came from fruit placed in the trees, placed on the ground in spring, or placed on the ground the preceding autumn, respectively. The number of fruit and peduncles attached to the trees in a planting of cv. Hardangerkirsebær was followed from February to July one year, and although there was a decline over time, fruit and/or their peduncles were still attached in substantial numbers in July, thus illustrating their potential as sources of inoculum. In observations over 2 years in a heavily infected orchard of cv. Stevnsbær, 75 and 47% of flowers and newly emerged fruit, respectively, were infected. Artificially inoculated flowers and fruit produced conidia until harvest, with a peak in mid-July. It may be concluded that previously infected and overwintered, as well as newly emerged tissue of sour cherry, may serve as sources of inoculum of C. acutatum throughout the growing season.

Abstract

Fungi within the Colletotrichum acutatum species complex occur asymptomatically on plant parts of many different plant species. Leaves from apple orchards in southern Norway were sampled, frozen for five hours and incubated for six days to reveal presence of asymptomatic infections of C. acutatum. Number of leaves (incidence) and leaf area covered (severity) with conidial masses of C. acutatum were assessed biweekly on cv. Aroma from late May to late September during three growing seasons. The first finding of conidial masses occurred in the second half of July, and there was a higher incidence occurring in August and September. Sampling of leaves from fruit spurs and vegetative shoots of cvs. Aroma and Elstar showed that conidial masses of C. acutatum developed on leaves on both shoot types, and there was no difference in incidence between these two types. The fungus was detected on leaves from six of eight commercial orchards of cv. Aroma over three years, with a mean incidence of 5.5 %. After storage, bitter rot was found on apple fruit from all eight orchards. There was no correlation between incidence of conidial masses of C. acutatum on leaves and on fruit. In all orchards and seasons investigated, incidence and severity on leaves varied from 0 to 67%and 0 to 85 %, respectively. The discovery of apple leaves containing conidial masses of C. acutatum clearly indicate for leaves as a potential source of inoculum for fruit infections.

To document

Abstract

Oidium neolycopersici, the cause of powdery mildew in tomato, was exposed to UV radiation from 250 to 400 nm for 1, 12, or 24 min. Radiation ≤ 280 nm strongly reduced conidial germination, hyphal expansion, penetration attempt and infection of O. neolycopersici. From 290 to 310 nm the effect depended on duration of exposure, while there was no effect ≥310 nm. There were no significant differences within the effective UV range (250–280 nm). Conidial germination on a water agar surface was b20% or around 40%, respectively, if samples were exposed for 1 min within the effective UV range followed by 24 h or 48 h incubation. Twelve or 24 min exposure reduced germination to close to nil. A similar trend occurred for germination of conidia on leaf disks on water agar in Petri dishes. The effective UV range significantly reduced all subsequent developmental stages of O. neolycopersici. There was no cytoplasmic mitochondrial streaming in conidia exposed to the effective UV range, indicating that there may be a direct effect via cell cycle arrest. There was no indication of reactive oxygen species involvement in UV mediated inhibition of O. neolycopersici. Optical properties of O. neolycopersici indicat- ed that the relative absorption of UV was high within the range of 250 to 320 nm, and very low within the range of 340 to 400 nm. Identification of UV wavelengths effective against O. neolycopersici provides a future basis for precise disease control.

Abstract

Effects of controlled atmosphere (CA) conditions on physiological disorders and fungal fruit decay on apple ‘Aroma’ were investigated. Fruit from three growing seasons were stored at 1% or 2% O2 (both at 2% CO2) at either 1°C or 3°C in small research units; controls were kept in the same ventilated rooms at the two temperatures (ambient air). The fruit were removed from storage after four or six months and assessed for fruit decay immediately afterwards and after two weeks at 20°C. Fruit quality parameters were recorded at the end of storage. On a three-year average, fruit stored in CA was less ripe at the end of storage. After both four and six months storage, CA reduced total decay (physiological disorders and fungal decay) by on average 70% and 45%, respectively, compared to storage in ambient air. Senescent breakdown was lower after CA storage for four months, but not after six months and not after simulated shelf life. Soft scald was lower when stored in CA both after cold storage at 1°C and simulated shelf life. After storage at 3°C there was lower incidence of soft scald when stored in CA after four months, but not after six months. For fungal fruit decay in general, there was no effect of low oxygen, however, 2% O2 gave slightly less bitter rot (Colletotrichum acutatum) than 1% O2 and significantly less than ambient air after simulated shelf life. Averaged over all oxygen levels, 1°C gave significantly less bitter rot than 3°C. It may be concluded that use of CA for storage of ‘Aroma’ is a good way of reducing development of physiological disorders. However, development of bitter rot seemed to be more influenced by temperature and storage time than by low O2.

To document

Abstract

Disease-suppressive effects of nighttime applications of ultraviolet-B (UV-B) were investigated at two irradiance levels (1.6 or 0.8 W/m2) in strawberry and rosemary plants inoculated with Podosphaera aphanis or Golovinomyces biocellatus, respectively. Plants were exposed to each irradiance level every third night for either 9 or 18 min, every night for either 3 or 6 min, or three times every night for either 1 or 2 min. Thus, over time, all plants received the same cumulative dose of UV-B, and severity of powdery mildew was reduced by 90 to 99% compared with untreated controls in both crops. Use of polished aluminum lamp reflectors and UV-B reflective surfaces on greenhouse benches significantly increased treatment efficacy. An automated apparatus consisting of an adjustable boom with directed airflow was used to move UV-B lamps over greenhouse benches at 25 or 50 cm/min. Directed airflow moved leaves on the subtending plants to better expose upper and lower surfaces to UV-B but directed airflow actually decreased the efficacy of UV-B treatments, possibly by dispersing conidia from lesions before they were exposed to a lethal dose of UV-B. Results indicate broad applicability of nighttime applications of UV-B to suppress powdery mildews, and that cumulative UV-B dose is an overriding factor determining efficacy. Finally, enhanced suppression on shaded or obscured tissues is more likely to be affected by reflective bench surfaces than through attempts to physically manipulate the foliage.

Abstract

In 2008, an epidemic caused by a new Neonectria sp. was discovered on white fir (Abies concolor) in several counties in southern Norway [1]. Later the pathogen was also found on other fir species in Norway and Denmark [2]. Typical symptoms and signs were dead shoots, flagging (dead branches), canker wounds, heavy resin flow, and occasionally red fruiting bodies (perithecia). Pathogenicity tests on several Abies spp. proved the fungus to be very aggressive, which corresponds well with observations of mortality of white fir and subalpine fir (A. lasiocarpa) from different age classes under field conditions. Sequencing of the internal transcribed regions (ITS) of the ribosomal DNA showed that this Neonectria sp. was most similar to N. ditissima (only 5 bp different from isolates in the GenBank), a common pathogen worldwide on broad leaf trees. The ITS sequences were very different (> 20 bp) from N. fuckeliana, a well-known fungus on Norway spruce in Scandinavia and other parts of the world, especially in the northern hemisphere. In 2011, the new Neonectria species was found on diseased trees in a Danish nordmann fir (Abies nordmanniana) seed orchard. Resin flow was seen from mature cones, and tests revealed that the seeds were infected by the Neonectria sp.

Abstract

Sydowia polyspora is a pathogenic, seed borne fungus on conifers [1]. It is especially troublesome in the Christmas tree industry, where it causes current season needle necrosis (CSNN) on fir (Abies spp.). Needles get chlorotic spots or bands and in severe cases the entire needles turn necrotic and shed. The fungus also commonly kills current year shoots (Sclerophoma shoot dieback) on both fir and spruce (Picea spp.). The latter we proved on subalpine fir (A. lasiocarpa) inoculated by S. polyspora from noble fir (Abies procera) seeds. Two conifer seed lots known from previous tests to contain a high percentage of S. polyspora were selected for a treatment experiment; alpine pine (Pinus mugo var. rotundata) and Noble fir. Both seed lots received the following five treatments; surface sterilized (10 sec. in 70 % ethanol plus 90 sec. in 0,5 % NaOCl), dipped in 15 % acidic acid, mixed with 0,36 gram Signum (boskalid and pyraklostrobin) per 100 gram seeds, mixed with 0,8 gram Mycostop (Streptomyces griseovirides) per 100 gram seeds, dipped in different concentrations of thyme oil (extracted from Thymus vulgaris), and control (no treatment). Based on the results we recommend Signum for conifer seed treatment. This fungicide controlled S. polyspora well and did not influence on the germination ability. Agricultural

Abstract

This paper presents powdery mildew species recorded on woody ornamentals, with special emphasis on the latest arrivals; Erysiphe flexuosa on horse chestnut (Aesculus hippocastanum), Erysiphe syringae-japonicae on lilac (Syringa vulgaris) and Podosphaera spireae on white spirea (Spiraea betulifolia). The two former were found in 2006, while the latter was first detected in 2008. Chasmothecia (formerly named cleistothecia) were not found on white spirea until 2010. Several locations seemed to have optimal conditions for development of powdery mildew diseases in 2006. That year the long established Sawadaea bicornis on sycamore maple (Acer pseudoplatanus), was found for the first time on tatarian maple (Acer tataricum ssp. ginnala) and one cultivar from hedge maple (Acer campestre "Red Shine"). Also several species and cultivars of Rhododendron had massive attacks of powdery mildew in 2006. In 2010, chasmothecia of E. azaleae were found on severely affected R. "Magnifica" in western Norway. Most powdery mildew species are host specific, but especially Phyllactinia guttata has a wider host range, e.g. hazel (Corylus spp.) and common ash (Fraxinus excelsior).

Abstract

The following diseases of roots, stem or shoots of apple are more or less troublesome, but they all seem to be easily spread by planting material. Twig blight and canker caused by Diplodia sp. and Phomopsis sp. are new to Norway, but are thus far not widely distributed. Apple proliferation is widely distributed in the fruit growing areas, while fire blight has not been observed in the fruit areas, although it is widely spread along the western coast of the country. European canker, silver leaf and crown- and collar rot are endemic in the country.

Abstract

odronia canker (Godronia cassandrae f. sp. vaccinii) is a severe disease in young plantings of highbush blueberry (Vaccinium corymbosum L.) in Norway. In Europe, only the imperfect stage (Topospora myrtillii) has been reported, and thus conidia produced in pycnidia are assumed to be important for dissemination of the fungus. The seasonal pattern of production of conidia was investigated in a commercial planting of ‘Jersey" in 1998 and a research planting of ‘Bluecrop" in 1998 to 2000. The disease became apparent in March on shoots infected the preceding growing season, and lesions started to form pycnidia containing conidia in April. Samples of stems with distinct lesions of Godronia canker were collected from the bushes every two to three weeks from early spring to autumn. Stem pieces with lesions were shaken in water to release conidia from the pycnidia, and the numbers of conidia were determined by microscopy. Conidia were present throughout the growing season, but the highest numbers occurred during May, with 106 to more than 107 conidia per lesion. The numbers generally decreased during July to 20 % or less of that found in May, and decreased further during September to around 4 %. Ability to germinate remained high throughout the period conidia were trapped, from April to November/December. Options to manage the disease are discussed.

To document

Abstract

The effect of day length on production and germinability of conidia and severity of disease caused by Podosphaera pannosa, the causal agent of rose powdery mildew, was studied. Whole potted plants or detached leaves of Rosa interspecific hybrid 'Mistral' were inoculated with P. pannosa and exposed to 0, 12, 18, 20, 22, or 24 h of artificial light per day in growth chambers equipped with mercury lamps. Increasing duration of illumination from 18 to 20 to 24 h per day reduced production of conidia by 22 to 62%. Exposure to 24 h of illumination per day also strongly reduced disease severity compared with 18 h. Our results suggest that increasing day lengths from 18 h per day to 20 to 24 h may suppress the disease significantly and, thereby, reduce the need for fungicide applications against powdery mildew.

Abstract

Development of ontogenic resistance to powdery mildew (Podosphaera aphanis) on strawberry leaves has been reported, however, the components of resistance have not been elucidated. Five developmental stages of strawberry leaves were identified and assigned numerical values from newly emerged and unexpanded (S1) to fully expanded and dark green (S5) of cvs. Korona and Senga Sengana. The upper and lower surface of the leaves were inoculated from each of the five leaf developmental stages and incubated under controlled conditions. The effect of leaf age on germination, infection efficiency, latency period, and sporulation were later evaluated. All responses were significantly (p = 0.05) affected by leaf age. Germination percentage, infection efficiency, and sporulation were highest, and latent periods were shortest on S1 leaves of both cultivars. On Senga Sengana, germinating conidia produced fewer secondary hyphae during infection. Conidia produced very few secondary hyphae and did not sporulate on S3 leaves, and no infections established on S4 or S5 leaves. The high success of infection and colonization of P. aphanis on S1 leaves indicates that disease is established preferentially on emergent and expanding leaves and these should be the target of management strategies.

To document

Abstract

A collection of four clonal isolates of Podosphaera aphanis was heterothallic and was composed of two mutually exclusive mating types. Cleistothecial initials approximate to 20 to 30 mu m in diameter were observed within 7 to 14 days after pairing of compatible isolates and developed into morphologically mature ascocarps within 4 weeks after initiation on both potted plants maintained in isolation and in field plantings in New York State and southern Norway. Ascospores progressed through a lengthy maturation process over winter, during which (i) the conspicuous epiplasm of the ascus was absorbed; (ii) the osmotic potential of the ascospore cytoplasm increased, resulting in bursting of prematurely freed spores in water; and, finally, (iii) resulting in the development of physiologically mature, germinable, and infectious ascospores. Release of overwintered ascospores from field collections was coincident with renewed plant growth in spring. Overwintered cleistothecia readily dehisced when wetted and released ascospores onto glass slides, detached strawberry leaves, and leaves of potted plants. Plant material exposed to discharged ascospores developed macroscopically visible mildew colonies within 7 to 10 days while noninoculated controls remained mildew free. Scanning electron and light microscopy revealed that cleistothecia of P. aphanis were enmeshed within a dense mat of hyphae on the persistent leaves of field-grown strawberry plants and were highly resistant to removal by rain while these leaves remained alive. In contrast, morphologically mature cleistothecia on leaves of nine deciduous perennial plant species were readily detached by simulated rain and seemed adapted for passive dispersal by rain to other substrates. Contrary to many previous reports, cleistothecia appear to be a functional source of primary inoculum for strawberry powdery mildew. Furthermore, they differ substantially from cleistothecia of powdery mildews of many deciduous perennial plants in their propensity to remain attached to the persistent leaves of their host during the intercrop period.

Abstract

In Norway, Nordmann fir (Abies nordmanniana) and subalpine fir (A. lasiocarpa) are the dominant Christmas tree species, and noble fir (A. procera) the dominant bough plant species. To determine if fungi found to cause diseases on fir in Norway might be seed borne, samples from twelve seed lots, including Nordmann fir from Austria, Georgia and Russia, subalpine fir from Canada and Norway and noble fir from Norway were tested using agar plate methods (PDA and WA). The most important finding was that Sydowia polyspora was present on seed from all firs from all countries (nine samples infected, 0.5 - 85 % infected seeds). Recently, it has been demonstrated in Norway that this fungus is the cause of current season needle necrosis (CSNN), which is considered a major disease in the Christmas tree and bough production both in Europe and USA. Sirococcus coniguenus was found in a Norwegian A. procera seed lot (31% infected seeds), which to our knowledge is the first report of this pathogen on fir seeds. Caloscypha fulgens was detected on subalpine fir seed from Canada. In addition the following fungal genera were detected: Acremoniella, Acremonium, Alternaria, Aspergillus, Botrytis, Chaetomium, Cladosporium, Diaphorte, Dictyopolyschema, Epicoccum, Fusarium, Genicularia, Mucor, Neonectria, Penicillium, Phoma, Rhizopus, Sordaria, Trichoderma, Trichothecium, and an unidentified fungus.

To document

Abstract

When rose plants bearing colonies of Podosphaera pannosa were placed in a wind tunnel, the number of conidia trapped was directly proportional to intensity of daylight-balanced (white) light from 5 to 150 mu mol m(-2) s(-1). Illumination of samples using blue (420 to 520 nm) light-emitting diodes (LEDs) increased the number of conidia trapped by a factor of approximately 2.7 over white light but germination of conidia under blue light was reduced by approximately 16.5% compared with conidia germination under white light. The number of conidia trapped under far-red (>685 nm) LEDs was approximately 4.7 times higher than in white light, and 13.3 times higher than under red (575 to 675 nm) LEDs, and germination was not induced compared with white light. When mildewed plants were exposed to cycles of 18 h of white light followed by 6 h of blue, red, far-red light, or darkness, light from the red LEDs reduced the number of conidia trapped by approximately 88% compared with darkness or far-red light. Interrupting the above dark period with 1 h of light from red LEDs also reduced the number of conidia trapped, while a 1-h period of light from far-red following the 1 h of light from red LEDs nullified the suppressive effect of red light. Our results indicate that brief exposure to red light during the dark interval may be as effective as continuous illumination in suppressing powdery mildew in greenhouse rose plant (Rosa x hybrida).

To document

Abstract

Current season needle necrosis (CSNN) has been a serious foliage disorder on true fir Christmas trees and bough material in Europe and North America for more than 25 y. Approximately 2-4 weeks after bud break, needles develop chlorotic spots or bands that later turn necrotic. The symptoms have been observed on noble fir (Abies procera), Nordmann fir (A. nordmanniana) and grand fir (A. grandis) on both continents. CSNN was reported as a physiological disorder with unknown aetiology from USA, Denmark, and Ireland, but was associated with the fungus Kabatina abietis in Germany, Austria and Norway. In 2007, a fungus that morphologically resembled K. abietis was isolated from symptomatic needle samples from Nordmann fir from Austria, Denmark, Germany, Norway, and USA. Sequencing of the internal transcribed spacer (ITS) region of ribosomal DNA of these cultures, plus a K. abietis reference culture from Germany (CBS 248.93), resulted in Hormonema dematioides, the imperfect stage of Sydowia polyspora, and thus the taxonomy is further discussed. Inoculation tests on Nordmann fir seedlings and transplants with isolates of S. polyspora from all five countries resulted in the development of CSNN symptoms. In 2009, S. polyspora was also isolated from symptomatic needles from Nordmann fir collected in Slovakia. (c) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Abstract

European ash (Fraxinus excelsior), also known as common ash, occurs naturally inland in lower areas of southeastern Norway and along the southern coast of the country. It is important both as a forest and ornamental tree. During the last decade, dieback has become a disastrous disease on F. excelsior in many European countries. The anamorphic fungus Chalara fraxinea T. Kowalski (1), described for the first time from dying ash trees in Poland, is now considered the cause of ash dieback (2). In May of 2008, C. fraxinea was isolated from 1.5 m high diseased F. excelsior in a nursery in Østfold County in southeastern Norway. Symptoms included wilting, necrotic lesions around leaf scars and side branches, and discoloration of the wood. From symptomatic branches, small pieces (approximately 1 cm3) were excised in the transition area between healthy and discolored wood. After surface sterilization (10 s in 70% ethanol + 90 s in NaOCl), the pieces were air dried for 1 min in a safety cabinet, cut into smaller pieces, and placed on media. The fungus was isolated on potato dextrose agar (PDA) and water agar (WA). On PDA, the cultures were tomentose, light orange, and grew slowly (21 mm mean colony diameter after 2 weeks at room temperature). Typical morphological features of C. fraxinea developed in culture. Brownish phialides (14.8 to 30.0 [19.5] × 2.5 to 5.0 [4.1] μm, n = 50) first appeared in the center of the colonies on the agar plugs that had been transferred. The agar plugs were 21 days old when phialides were observed. Abundant sporulation occurred 3 days later. Conidia (phialospores) extruded apically from the phialides and formed droplets. Conidia measured 2.1 to 4.0 (3.0) × 1.4 to 1.9 (1.7) μm (n = 50). The first-formed conidia from each phialide were different in size and shape from the rest by being longer (6 μm, n = 10) and more narrow in the end that first appeared at the opening of the phialide. Internal transcribed spacer sequencing confirmed that the morphological identification was correct (Accession No. EU848544 in GenBank). A pathogenicity test was carried out in June of 2008 by carefully removing one leaf per plant on 10 to 25 cm high F. excelsior trees (18 trees) and placing agar plugs from a 31-day-old C. fraxinea culture (isolate number 10636) on the leaf scars and covering with Parafilm. After 46 days, isolations were carried out as described above from discolored wood that had developed underneath necrotic lesions in the bark and subsequently caused wilting of leaves. All the inoculated plants showed symptoms, and C. fraxinea was successfully reisolated. No symptoms were seen on uninoculated control plants (eight trees) that had received the same treatment except that sterile PDA agar plugs had been used.

Abstract

Several non-chemical control agents are now registered and available for control of powdery mildews. However, there is little or no information about their efficacy against strawberry powdery mildew, caused by Podosphera aphanis. Trials were conducted to compare the performance of non-chemical control agents to chemical fungicides under laboratory, greenhouse and high plastic tunnel conditions. The treatments included: AQ10 (active ingredient is Ampelomyces quisqualis, a hyperparasite on powdery mildew), AQ10 + Silwet Gold (organosilicon adjuvant, enhances distribution and wetting), Vacciplant (active ingredient is laminarin, an extract from brown algae), JMS Stylet oil (mineral oil), Rape seed oil + detergent, Thiovit (wettable sulphur), Topas 100 EC (penconazole) + Candit (kresoximmethyl) and water as control. In the greenhouse, one quarter of the recommended dose was used either daily in one experiment or three times per week in another. In the field, half of recommended rates were applied twice weekly. Both in the greenhouse and tunnel experiments, the chemical control Topas + Candit and AQ10 + Silwet Gold significantly reduced disease severity. AQ10,Vacciplant and Thiovit were moderately effective when applied daily in the greenhouse trial, but not significantly different from the water control when applied three time per week in the greenhouse and twice a week in the tunnel experiment. In the plastic tunnel, the JMS stylet oil and Rape seed oil + detergent treatments caused severe phytotoxic reaction (necrosis). AQ10 used alone had the poorest performance in the tunnel. This indicated that the spreader either enhances the effect of AQ10 and/or the spreader itself had an effect. In laboratory experiments with powdery mildew grown on strawberry leaflets in Petri dishes, spore germination after treatments with water, Stylet oil, Candit and Thiovit were 74, 53, 8 and 7%, respectively. The effect of Thiovit found in the laboratory was not reflected in the greenhouse and plastic tunnel trials. We will further explore the protectant, curative and eradicative effects of the compounds included here.

Abstract

Development of ontogenic resistance to powdery mildew (Podosphaera aphanis) in strawberry fruit has not been quantified, and thus cannot be exploited in disease management programs. Four commercially-relevant strawberry cultivars were evaluated for ontogenic resistance to powdery mildew. Fruits were inoculated at one of the four growth stages: flowering, green, white and early pink fruit. There was a significant difference between and within cultivars at the bloom and green stage of inoculations (P <0.05) for both disease incidence and severity. On average 16.4, 39.5, 48.7, and 60.3 % of the fruits inoculated at bloom developed powdery mildew in cultivars Elan, Korona, Frida and Inga, respectively. None of the cultivars developed powdery mildew when inoculated at the pink stage. It may be concluded that flowers and green fruits of strawberry were much more susceptible to powdery mildew infection than white and pink fruits. The high susceptibility of cultivars at the flower and early green stages seemed coincident with the succulent nature of the fruits at these stages, making it easy for penetration and establishment of mildew. Control measures targeting at these critical windows of fruit susceptibility are likely to reduce yield loss.

Abstract

Combinations of covering and fungicide applications were tested on two sweet cherry cultivars; Van during two years (2001 and 2002) and Lapins three years (2001"2003). The following treatments were tested in 2001 and 2002: (i) covering during flowering and from 5 to 6 weeks prior to harvest and throughout harvest, no fungicides applied, (ii) as (i) but fungicides were applied once or twice between the two covering periods, (iii) covered 5 to 6 weeks prior to harvest and throughout harvest, fungicides applied two or three times prior to covering, and (iv) uncovered throughout the season, fungicides applied two or three times in the period from flowering towards harvest. In 2003, the trees were covered only from 5 to 6 weeks prior to harvest and throughout harvest. Both treatments that year received fungicide applications during flowering, but one of the treatments was left unsprayed during the green fruit period prior to covering. Every combination of covering and fungicide applications reduced total fruit decay at harvest significantly compared to a full fungicide programme and no covering. In three of four trials when the trees were covered during flowering and prior to harvest, and fungicide applications were omitted in the green fruit phase between the covering periods, no significant increase in fruit rot occurred compared to treatments where fungicides were applied. However, in one trial there was a significant increase in fruit rot by leaving out one fungicide spray during that intermittent period. Furthermore, if fungicides were only applied during flowering and not on green fruit before covering in 2003, a significant increase in fruit rot occurred. Thus, leaving out fungicide applications during that supposedly less susceptible green fruit period, increased the risk of acquiring fruit rot. Applying fungicides during the green fruit stage significantly reduced the amount of brown rot in four of five trials and anthracnose in one of five trials. No negative effect on fruit quality was found from the extended covering periods. It can be concluded that covering effectively replaced fungicide applications during flowering and prior to harvest.