To document

Abstract

Conversion of semi-natural habitats, such as field margins, fallows, hedgerows, grassland, woodlots and forests, to agricultural land could increase agricultural production and help meet rising global food demand. Yet, the extent to which such habitat loss would impact biodiversity and wild species is unknown. Here we survey species richness for four taxa (vascular plants, earthworms, spiders, wild bees) and agricultural yield across a range of arable, grassland, mixed, horticulture, permanent crop, for organic and non-organic agricultural land on 169 farms across 10 European regions. We find that semi-natural habitats currently constitute 23% of land area with 49% of species unique to these habitats. We estimate that conversion of semi-natural land that achieves a 10% increase in agricultural production will have the greatest impact on biodiversity in arable systems and the least impact in grassland systems, with organic practices having better species retention than non-organic practices. Our findings will help inform sustainable agricultural development.

To document

Abstract

Beetles were surveyed using pitfall traps in a community garden in Andernach, Germany. Two years of data revealed a beetle fauna characteristic of sandy, warm and dry habitats. Sporadic findings include species typical for the Mediterranean.

To document

Abstract

Aims Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location Palaearctic biogeographic realm. Methods We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology.

To document

Abstract

Participating in a neighbourhood and community garden has positive social and emotional impacts, as well as the satisfaction derived from growing food. Adults and teenagers participating in gardening activities at Linderud farm in Oslo report positive experiences most commonly related to social networks, growing food, feelings/emotions and aesthetics.

To document

Abstract

Afforestation of marginal cultivated land is an internationally approved climate mitigation strategy, however, with uncertain implications for soil organic carbon (SOC) storage. We examined the effect of forest planting by measuring SOC at two adjacent sites: one with a Norway spruce forest planted in 1968 and one actively grazed pasture. Both sites had similar land-use history before forest planting, and they were as similar as possible in all other edaphic factors. There were no significant differences in SOC stocks down to 30 cm mineral soil, 7.15 and 8.51 kg C m−2 in the forest plantation and pasture respectively. Only a minimal build-up of an O horizon, less than 2 cm, was observed in the plantation. The SOC stocks of the plantation and pasture were not significantly different from that of a nearby old forest, 7.17 kg C m−2. When comparing these three land-uses we found that there were significant differences in the upper 10 cm of the soil with regard to other soil properties. Nitrogen (N) stock and pH were significantly lower in the old forest compared to the plantation, which again was significantly lower than that of the pasture. The opposite was the case for the C/N ratio. We conclude that there were no significant differences in SOC stocks in the upper 30 cm 50 years after afforestation with Norway spruce, but that there is still a legacy from the former cultivation that may influence both productivity and organic matter dynamics.

Abstract

This report describes the development of a novel model & digital map system for visualising diverse ecosystem services at national scale in Norway. Denne rapporten beskriver utviklingen av en ny metode og en digital kartløsning for å visualisere ulike økosystemtjenester på nasjonal skala i Norge.

Abstract

Over the past few decades, there has been increasing interest in recording landscape change. Monitoring programmes have been established to measure the scope, direction and rate of change, and assess the consequences of changes for multiple interests, such as biodiversity, cultural heritage and recreation. The results can provide feedback for multiple sectors and policy domains. Political interests may change over time, but long-term monitoring demands long-term funding. This requires that monitoring programmes remain relevant and cost-efficient. In this paper, we document experiences from 20 years of the Norwegian Monitoring Programme for Agricultural Landscapes—the ‘3Q Programme’. We explain how data availability and demands for information have changed over time, and how the monitoring programme has been adapted to remain relevant. We also discuss how methods of presentation influence the degree of knowledge transfer to stakeholders, in particular to policy makers.

To document

Abstract

Abstract: GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phyto-coenologia 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems.

Abstract

Norway has a political goal to minimize the loss of cultural heritage due to removal, destruction or decay. On behalf of the national Directorate for Cultural Heritage, we have developed methods to monitor Cultural Heritage Environments. The complementary set of methods includes (1) landscape mapping through interpretation of aerial photographs, including field control of the map data, (2) qualitative and quantitative initial and repeat landscape photography, (3) field recording of cultural heritage objects including preparatory analysis of public statistical data, and (4) recording of stakeholder attitudes, perceptions and opinions. We applied these methods for the first time to the historical clustered farm settlement of Havrå in Hordaland County, West Norway. The methods are documented in a handbook and can be applied as a toolbox, where different monitoring methods or frequency of repeat recording may be selected, dependent on local situations, e.g., on the landscape character of the area in focus.

Abstract

When ground level photography is to be used in landscape monitoring, it is important to record when, where, how and possibly even why the photographs are taken. Standardisation enables better repeat photography in the future and maximises comparability of photos over time. We used a Cultural Environment protected by law on the peninsula of Bygdøy,Oslo municipality, as a study area to document advantages and disadvantages of different approaches to the first round of landscape photography for long-term monitoring.

Abstract

Agricultural landscapes are products of farming activity in the past and present. They are everyday landscapes for many people and are important for outdoor recreation. Many plant and animal species find their habitat in these landscapes, and a high number of cultural heritage sites can also be found there. At the same time, agricultural landscapes are continuously subject to change. To ensure sufficient information on how these landscapes change, a national monitoring programme with the acronym “3Q” was initiated in 1998, to document status, continuity and change in agricultural landscapes in Norway. The Division of Survey and Statistics at NIBIO is responsible for the programme.

To document

Abstract

Purpose Inclusion of biodiversity as an indicator in the land use impact pathway of Life Cycle Assessment (LCA) is essential to assess the effects of human activities on the environment. Numerous models have been applied, but validations that use actual data, collected in the field, are scarce. Methods The expert system SALCA-BD (Swiss Agricultural LCA—Biodiversity), assigns coefficients for land use class suitability and impact of agricultural practices on species diversity at field and farm scale. We used data on land use classes and agricultural practices from 132 farms located in eight European regions to complete the life cycle inventory. SALCA-BD species diversity scores were calculated for individual fields, aggregated to the farm scale, and compared to field records of arable crop flora, grassland flora, spiders, and wild bees. Results and discussion Overall, species diversity scores from SALCA-BD were positively related to the observed species richness from field survey data. The extent of the relationship diminished from arable crop flora and grassland flora to spiders and to wild bees, and from field to farm scale. Conclusions Validation of a LCA biodiversity assessment tool with data from field surveys revealed the benefit of considering multiple aspects of biodiversity. The appropriate scale for species diversity assessment (as a proxy for biodiversity) is the respective species habitat. Extension of scale increases uncertainty, which should be addressed by developing characterization factors for as detailed a land use classification as possible.

To document

Abstract

The main objective of this work was to analyse how increased harvesting for bioenergy production might affect other Ecosystem Services (ES) in two Norwegian municipalities (Ringsaker and Voss). The aim was to identify locations where synergies or conflicts between ES could be expected. The spatial distribution of eight different ES (3 provision, 3 regulation and 2 cultural services) was modelled using information provided by land use spatial databases and additional data sources. Model parameters were set by integrating existing research and expert knowledge. Maps showing the level of provision of ES were analysed using a moving window to analyse scale dependence in the spatial distribution of ES provision. Map algebra was then used to identify areas providing multiple ES, thus defining the most important areas on which to focus the management of both synergies and trade-offs. Finally, specific ‘binary bundles’ maps, where bioenergy provision was compared with each of the other ES, were developed. The methodology proved its utility to assess the compatibility of bioenergy uses with other services. This straightforward approach is readily replicable in other regions and can be used as a decision support tool for planning and designing provision areas, and to ensure sustainable forest management approaches.

To document

Abstract

Habitat descriptors are cost effective biodiversity indicators demanded by stakeholders and required for regional and global biodiversity monitoring. We mapped 195 farms of different types in twelve case study regions across Europe and tested 18 habitat descriptors for scientific validity, information content and ease of interpretation. We propose a core set consisting of (i) four descriptors to measure structural composition and configuration of farms (Habitat Richness, Habitat Diversity, Patch Size, and Linear Habitats), (ii) three descriptors addressing specific habitat types (Crop Richness, Shrub Habitats, and Tree Habitats) and (iii) one interpreted descriptor (Semi-Natural Habitats). As a set, the descriptors make it possible to evaluate the habitat status of a farm and to track changes occurring due to modified land use and/or management, including agri-environmental measures. The farm habitat maps can provide ground truth information for regional and global biodiversity monitoring.

To document

Abstract

Life Cycle Assessment (LCA) is a widely used tool to assess environmental sustainability of products. The LCA should optimally cover the most important environmental impact categories such as climate change, eutrophication and biodiversity. However, impacts on biodiversity are seldom included in LCAs due to methodological limitations and lack of appropriate characterization factors. When assessing organic agricultural products the omission of biodiversity in LCA is problematic, because organic systems are characterized by higher species richness at field level compared to the conventional systems. Thus, there is a need for characterization factors to estimate land use impacts on biodiversity in life cycle assessment that are able to distinguish between organic and conventional agricultural land use that can be used to supplement and validate the few currently suggested characterization factors. Based on a unique dataset derived from field recording of plant species diversity in farmland across six European countries, the present study provides new midpoint occupation Characterization Factors (CF) expressing the Potentially Disappeared Fraction (PDF) to estimate land use impacts on biodiversity in the ‘Temperate Broadleaf and Mixed Forest’ biome in Europe. The method is based on calculation of plant species on randomly selected test sites in the biome and enables the calculation of characterization factors that are sensitive to particular types of management. While species richness differs between countries, the calculated CFs are able to distinguish between different land use types (pastures (monocotyledons or mixed), arable land and hedges) and management practices (organic or conventional production systems) across countries. The new occupation CFs can be used to supplement or validate the few current CF's and can be applied in LCAs of agricultural products to assess land use impacts on species richness in the ‘Temperate Broadleaf and Mixed Forest’ biome.

To document

Abstract

1.To evaluate progress on political biodiversity objectives, biodiversity monitoring provides information on whether intended results are being achieved. Despite scientific proof that monitoring and evaluation increase the (cost) efficiency of policy measures, cost estimates for monitoring schemes are seldom available, hampering their inclusion in policy programme budgets. 2.Empirical data collected from 12 case studies across Europe were used in a power analysis to estimate the number of farms that would need to be sampled per major farm type to detect changes in species richness over time for four taxa (vascular plants, earthworms, spiders and bees). A sampling design was developed to allocate spatially, across Europe, the farms that should be sampled. 3.Cost estimates are provided for nine monitoring scenarios with differing robustness for detecting temporal changes in species numbers. These cost estimates are compared with the Common Agricultural Policy (CAP) budget (2014–2020) to determine the budget allocation required for the proposed farmland biodiversity monitoring. 4.Results show that the bee indicator requires the highest number of farms to be sampled and the vascular plant indicator the lowest. The costs for the nine farmland biodiversity monitoring scenarios corresponded to 0·01%–0·74% of the total CAP budget and to 0·04%–2·48% of the CAP budget specifically allocated to environmental targets. 5.Synthesis and applications. The results of the cost scenarios demonstrate that, based on the taxa and methods used in this study, a Europe-wide farmland biodiversity monitoring scheme would require a modest share of the Common Agricultural Policy budget. The monitoring scenarios are flexible and can be adapted or complemented with alternate data collection options (e.g. at national scale or voluntary efforts), data mobilization, data integration or modelling efforts.

Abstract

Increased forest biomass production for bioenergy will have various consequences for landscape scenery, depending on both the landscape features present and the character and intensity of the silvicultural and harvesting methods used. We review forest preference research carried out in Finland, Sweden and Norway, and discuss these findings in relation to bioenergy production in boreal forest ecosystems. Some production methods and related operations incur negative reactions among the public, e.g. stump harvesting, dense plantation, soil preparation, road construction, the use of non-native species, and partly also harvest of current non-productive forests. Positive visual effects of bioenergy production tend to be linked to harvesting methods such as tending, thinning, selective logging and residue harvesting that enhance both stand and landscape openness, and visual and physical accessibility. Relatively large differences in findings between studies underline the importance of local contextual knowledge about landscape values and how people use the particular landscape where different forms of bioenergy production will occur. This scientific knowledge may be used to formulate guiding principles for visual management of boreal forest bioenergy landscapes.

To document

Abstract

No abstract has been registered

To document

Abstract

No abstract has been registered

Abstract

No abstract has been registered

Abstract

No abstract has been registered

Abstract

For a quarter of a century, sustainable development has been on the political and research agendas. Within the field of landscape ecology, a wide array of research has documented the effects of alternative land uses, analysed driving forces of land use change and developed tools for measuring such changes, to mention but a few developments. There have also been great advances in technology and data management. Nevertheless, unsustainable land use continues to occur and the science of landscape ecology has had less influence on landscape change than aimed for. In this paper we use Norwegian examples to discuss some of the reasons for this. We examine mismatches in the spatial and temporal scales considered by scientists, decision-makers and those who carry out land use change, consider how this and other factors hinder effective communication between scientists and practitioners, and urge for a stronger focus on what it is that motivates people to action. We suggest that the concept of landscape services can be useful not only for researchers but also provide valuable communication and planning tools. Finally, we suggest more emphasis on applying adaptive management in landscape ecology to help close the gaps, both between researchers and policy and, even more crucially, between researchers and practitioners.

Abstract

No abstract has been registered

Abstract

Farmland biodiversity is an important component of Europe’s biodiversity. More than half the continent is occupied by agricultural lands. They host specific habitats and species, which – in addition to the conservation values they provide – perform vital ecological functions. Indicators are needed to enable the monitoring of biodiversity at the farm level for the purpose of assessing the impacts of farming practices and of agricultural policies. Our research aims at identifying farmland biodiversity indicators which are scientifically sound, operational and relevant for stakeholders. We screened the literature for farmland biodiversity indicators and, in an iterative process with stakeholders, we identified 28 candidate indicators for genetic, species and habitat diversity. Those selected biodiversity indicators, as well as 14 management parameters that are known to relate to biodiversity, were assessed in 12 case study regions across Europe. Each case study region represents a typical production system (i.e. specialist field crops, horticulture and permanent crops; specialist grazing with cattle and other livestock types; mixed crop and livestock farming). In each region, 8 – 20 farms were randomly selected, mostly within the two groups of organic and non-organic farms, to obtain a gradient of farming intensity. Indicators were measured applying standardized sampling procedures and farm interviews. Sampling effort was recorded in order to assess the cost of indicator measurement. For each case study region, biodiversity indicators are presently being evaluated in conjunction with management indicators. Surrogate indicators will be proposed when possible and indicators will be prioritized taking into account their validity, practicality, cost and priority for stakeholders. Based on preliminary results, the presentation will focus on the relation between direct (species and habitat diversity) indicators and indirect (farm management) parameters. Part of this research was funded by the EU FP7 contract KBBE-2B-227161. For more information consult www.biobio-indicator.org

Abstract

Farmland biodiversity is an important component of Europe’s biodiversity. More than half the continent is occupied by agricultural lands. They host specific habitats and species, which - in addition to their conservation values they provide - perform vital ecological functions. Indicators are needed to enable the monitoring of biodiversity at the farm level for the purpose of assessing the impacts of farming practices and of agricultural policies. Our research aims at identifying farmland biodiversity indicators which are scientifically sound, operational and relevant for stakeholders. We screened the literature for farmland biodiversity indicators and, in an iterative process with stakeholders, we identified 28 candidate indicators for genetic, species and habitat diversity. Those selected biodiversity indicators, as well as 14 management indicators that are known to relate to biodiversity, were assessed in 12 case study regions across Europe. Each case study region represents a typical production system (i.e. specialist field crops, horticulture and permanent crops; specialist grazing with cattle and other livestock types; mixed crop and livestock farming). In each region, 8-20 farms were randomly selected, mostly within the two groups of organic and non-organic farms, to obtain a gradient of farming intensity. Indicators were measured applying standardized sampling procedures and farm interviews. Sampling effort was recorded in order to assess the cost of indicator measurement. For each case study region, biodiversity indicators are presently being evaluated in conjunction with management indicators. Surrogate indicators will be proposed when possible and indicators will be prioritized taking into account their validity, practicality, cost and priority for stakeholders. Based on preliminary results, the presentation will focus on the specific challenges of farm level monitoring, addressing issues of sampling design within the farms and up-scaling from plot to farm to region. Part of this research was funded by the EU FP7 contract KBBE-2B-227161. For more information consult www.biobio-indicator.org

Abstract

The centennial volume of this journal provides a fitting time to stop and reflect. Do we know where we are heading? Are we progressing in the right direction? Having studied landscape change for some years, we have seen the tremendous power of engagement that can be found in landscapes. Landscape is a theme that most people easily relate to. At the same time, landscape research has provided many appropriate tools for documenting landscape change and the effects of change. Yet in spite of public engagement and scientific knowledge, we still find many examples of negative landscape developments. In this paper we reflect on the applications of landscape research and the issue of communicating scientific findings to policy, management, landowners and the general public. Do we need a greater focus on communication to achieve sustainable landscape development?

Abstract

Protected Landscapes (PLs) are increasingly used in Norway to conserve cultural (human modified) landscapes. In many cases the maintenance of agricultural activities in PLs is required to preserve landscape character. Whilst research exists on land conservation policies in general, the particular effects of PL on management and adjustment of the farms involved have not received attention in the literature. We present results from a questionnaire sent to owners of agricultural land within PLs in Norway. Whilst landowners were divided upon the effects of PLs on farm management, the economic situation of the farm was little affected. Furthermore, changes in farm management after the establishment of a PL did not seem to have been driven by the establishment of the PLs per se. Most importantly, farm management changes were related to potential options to develop the farm and its land. A statistical model showed that PL-farms did not differ significantly from farms outside PL in the development of their land use or animal husbandry. Our findings thus indicate that the establishment of PL played a minor role as a driving force of changes in farm management and farm income.

Abstract

The coastal heath region along the western coast of Norway, dominated by Calluna vulgaris, is undergoing rapid change. Vegetation changes are caused by changes in management, including reduced frequency or abandonment of periodic heath burning and reduced cutting and grazing. The islands of Froan, in the outermost part of Sør-Trøndelag County in mid-western Norway, are dominated by coastal heath in a state of recession due to reduced traditional land use. The coastal heath is acknowledged as vulnerable and valuable by national environmental authorities, and local landscape management is supported by different national subsidies. The authors mapped the vegetation on Froan and used rule-based GIS-modelling to predict the relative potential for future vegetation changes. The model was based on a range of map layers, including management themes such as history of heath burning and peat removal, current practices of sheep grazing, and also themes derived from the vegetation map, such as soil nutrients, soil moisture and present management status. The resulting model output provides relative probabilities of future changes under different land-use scenarios, and highlights where management efforts should be focused in order to maintain the traditional landscape character.

Abstract

Achieving multifunctionality on a parcel of land, or in a landscape as a whole, requires a delicate balance between the different functions. This is particularly so when one of the desired functions is agricultural production. This paper examines the special challenges involved when cultural landscapes are protected by law. Norwegian `Landscape Protection Areas` are intended to preserve the landscape character of special landscapes. Ideally these landscapes should preserve ecological functions, whilst at the same time allowing for recreation and tourism, and the economic returns to ensure continued use of the landscape in the future. Balancing these functions is fraught with difficulties. The former agricultural systems that shaped these cultural landscapes may no longer be viable from the perspective of food production, and biodiversity is notoriously bad at paying for itself. Are the farmers that own the land willing to take on new roles as landscape managers rather than food producers? And who will pay for this? We present results of a questionnaire to farmers that own or manage farmland in Landscape Protection Areas. Of the 893 respondents, almost a quarter claimed that their farm business had been negatively affected by landscape protection. Niche products or alternative income possibilities had not been realised. We found a generally negative attitude towards municipal authorities and 24 % of respondents were strongly against the establishment of new Landscape Protection Areas, even if the State paid compensation for their economic loss. Based on results of the study we suggest that major improvements to the protection system could be made simply by improving communication between management authorities and farmers and involving farmers in making management plans.

Abstract

In recent years the objectives of agricultural policy have shifted from a principal focus on production and income towards agriculture\"s provision of public goods summarized by the term ‘multifunctionality\". Agricultural sector models, which are important tools for policy advice, need to be adjusted in order to maintain their relevance and reliability in accordance with policy changes. This paper investigates the strengths and limitations of incorporating multifunctionality indicators in the agricultural sector model Common Agricultural Policy Regional Impact Analysis (CAPRI) by reviewing the existing literature and incorporating such indicators in the model. Multifunctionality indicators are developed and implemented for four selected aspects of multifunctionality: food security, landscape, environmental concerns and rural viability. By running different policy reform scenarios, it is shown that indicators closely related to the underlying economic variables of the sector model may provide useful to describe the effects of policy reforms on agriculture\"s multifunctionality. However, these indicators do not completely cover the selected aspects of multifunctionality. In order to yield a broader coverage, this paper proposes to strengthen interdisciplinary research by linking agricultural sector models with other model systems like farm-based economical-ecological models, regional economic models or landscape information systems.

Abstract

There is increasing awareness of the need to monitor trends in our constantly changing agricultural landscapes. Monitoring programmes often use remote sensing data and focus on changes in land cover/land use in relation to values such as biodiversity, cultural heritage and recreation.Although a wide range of indicators is in use, landscape aesthetics is a topic that is frequently neglected. Our aim was to determine whether aspects of landscape content and configuration could be used as surrogate measures for visual landscape quality in monitoring programmes based on remote sensing.In this paper, we test whether map-derived indicators of landscape structure from the Norwegian monitoring programme for agricultural landscapes are correlated with visual landscape preferences. Two groups of people participated: (1) locals and (2) non-local students.Using the total dataset, we found significant positive correlations between preferences and spatial metrics, including number of land types, number of patches and land type diversity. In addition, preference scores were high where water was present within the mapped image area, even if the water itself was not visible in the images.When the dataset was split into two groups, we found no significant correlation between the preference scores of the students and locals. Whilst the student group preferred images portraying diverse and heterogeneous landscapes, neither diversity nor heterogeneity was correlated with the preference scores of the locals.We conclude that certain indicators based on spatial structure also have relevance in relation to landscape preferences in agricultural landscapes. However, the finding that different groups of people prefer different types of landscape underlines the need for care when interpreting indicator values

Abstract

Knowledge of variation in vascular plant species richness and species composition in modern agricultural landscapes is important for appropriate biodiversity management. From species lists for 2201 land-type patches in 16 1-km2 plots five data sets differing in sampling-unit size from patch to plot were prepared.Variation in each data set was partitioned into seven sources: patch geometry, patch type, geographic location, plot affiliation, habitat diversity, ecological factors, and land-use intensity.Patch species richness was highly predictable (75% of variance explained) by patch area, within-patch heterogeneity and patch type. Plot species richness was, however, not predictable by any explanatory variable, most likely because all studied landscapes contained all main patch types ploughed land, woodland, grassland and other open land and hence had a large core of common species.Patch species composition was explained by variation along major environmental complex gradients but appeared nested to lower degrees in modern than in traditional agricultural landscapes because species-poor parts of the landscape do not contain well-defined subsets of the species pool of species-rich parts.Variation in species composition was scale dependent because the relative importance of specific complex gradients changed with increasing sampling-unit size, and because the amount of randomness in data sets decreased with increasing sampling-unit size. Our results indicate that broad landscape structural changes will have consequences for landscape-scale species richness that are hard or impossible to predict by simple surrogate variables.

To document

Abstract

The level of support to Norwegian agriculture is partly justified with reference to agriculture’s multifunctionality. The concept of multifunctionality involves the provision of so-called “public goods» by agriculture, in addition to the production of food and fibre. Examples of these public goods include cultural landscape, biodiversity, ecological functions, cultural heritage, the viability of rural areas, and food security. The overall aim of the research project “Operationalization of multifunctionality using the CAPRI modeling system» is to study the effects of policy instruments on agriculture’s multifunctionality by defining quantitative indicators for selected elements of agriculture’s multifunctionality that can be implemented in the agricultural sector model CAPRI. This working paper takes a first step towards the appropriate regionalization when multifunctionality is concerned. The current regionalization of the CAPRI model is at the county level. This approach fails when multifunctionality is concerned, because many issues of multifunctionaliy (e.g., cultural landscape aspects) are independent of administrative borders at that level. As the aim of the overall project is to study the effects of policy instruments on agriculture’s multifunctionality, it is important to design regions within the CAPRI model that to a greater extent exhibit similar characteristics with respect to aspects of agriculture’s multifunctionality. Accordingly, it is reasonable to assume that policy changes will have quite similar effects on the multifunctionality indicators within each of these CAPRI regions. This task has been addressed by performing a cluster analysis by which Norwegian municipalities have been grouped with respect to their performance on variables that are expected to describe different aspects of the multifunctionality of agriculture. This information will then later on be used to regionalize the CAPRI model accordingly. […]

Abstract

An accumulating body of research identifies the importance of landscape structure for a wide range of countryside interests. Landscape structure reflects the results of policies and practices, and is well-suited as a target for management actions. New landscape metrics represent a potential for indicator-based management, provided such metrics relate consistently to the landscape values of interest. In this paper we propose that aspects of landscape structure, specifically heterogeneity, may be related to landscape-based values such as biodiversity, cultural heritage and human appreciation. Birds and vascular plants correlated well with our index for the heterogeneity of land types, whereas insects did not. Occurrence of prehistoric graves was also associated with land type heterogeneity, though other types of cultural remains were not. Landscape experience seems to be associated with the heterogeneity of landscape space rather than heterogeneity of land types. Different aspects of heterogeneity, scale, and variation over time all contribute to explain how our measures of landscape-based values vary in their relationship to landscape heterogeneity. Successful integration between disciplines in landscape studies depends on having a common operational framework, a shared theoretical basis, and a harmonised approach to data collection.