Lars Olav Brandsæter
Senior Research Scientist
(+47) 901 09 435
lars.olav.brandsaeter@nibio.no
Place
Ås H7
Visiting address
Høgskoleveien 7, 1433 Ås
Authors
Heidi Udnes Aamot Adnan Šišić Lars Olav Brandsæter Silje Kvist Simonsen Birgitte Henriksen Jörg Peter BareselAbstract
Over the past decades, significant efforts have been made to promote the cultivation of legumes. Cultivation of legumes, particularly grain legumes, can reduce the use of mineral nitrogen fertilizers, enhance biodiversity, reduce dependence on imported feed proteins, and improve soil biological properties and humus content. Despite these efforts, grain legumes are still not widely grown. One major obstacle to legume cultivation is "legume fatigue". Legume fatigue limits the expansion of legume cultivation in many European regions. The exact causes of legume fatigue are not fully understood, but soil-borne diseases interacting with abiotic factors are believed to play a key role. Recent findings suggest that the balance between pathogen load and soil suppressiveness is critical. Some farms and regions do not report legume fatigue as a problem, while others experience severe limitations in legume production. Identifying the causes of this variation is urgent and requires a collaborative effort that covers different environments and includes comprehensive assessments of both biotic and abiotic factors. In a recently launched project, LeFaSus, a network of farms and long-term experiments has been established to identify the primary factors contributing to legume fatigue. This network spans a transect from southern to northern Europe, including Italy, Germany, Luxembourg, and Norway. The project aims to deliver a reliable set of indicators for both legume fatigue and disease-suppressive soils, linking these indicators to the management practices that likely influenced them. The background and plans for the project will be presented.
Abstract
Fast regrowth from deep roots and rhizomes makes it difficult to mechanically control the perennials Cirsium arvense and Tussilago farfara respectively. It is, however, not clear whether new shoots originate mainly from fragments of roots/rhizomes in upper soil layers or from an intact system below depth of soil cultivation. Here we present results from three experiments with natural infestations of C. arvense, and two with both C. arvense and T. farfara. Plots of 1 m2 were excavated to different depths (13–25 cm), all below-ground plant parts in the topsoil were collected and thereafter fragments were either returned to or removed from the plots. Regrowth from disturbed plots with removed or returned fragments was compared. The origin of regrown shoots, that is, whether they originated from seeds, intact below-ground root/rhizome systems or returned fragments, was examined. More C. arvense shoots originated from the intact root system (48%–84%) than from root fragments (16%–52%). The final aboveground biomass was not affected by removal of the top-soil fragments. For T. farfara, a small proportion (3%) of new shoots originated from the intact rhizome system, and the rest from fragments. We conclude that the intact root system of C. arvense contributes at least as much as root fragments to regrowth after soil cultivation, which might imply that time of treatment and depth of cultivation are crucial for the effect of mechanical control. For T. farfara, the results suggest that tillage equipment with high capacity to fragment the rhizome system will contribute to efficient control.
Authors
Marian Malte Weigel Therese With Berge Jukka Salonen Timo Lötjönen Bärbel Gerowitt Lars Olav BrandsæterAbstract
Controlling creeping perennial weeds is challenging throughout all farming systems. The present study distinguished and explored three different methods to control them non-chemically: disturbance with inversion, disturbance without inversion, and competition. Focusing on Cirsium arvense, Elymus repens, and Sonchus arvensis, we conducted a field study (2019–2021) at three northern European sites in Germany, Finland, and Norway. We investigated the effects of the control methods ploughing (inversion disturbance), root cutting (non-inversion disturbance), and cover crops (competition) alone. Root cutting was conducted using a prototype machine developed by “Kverneland”. Eight treatments were tested in factorial designs adapted for each site. Control methods were applied solely and combined. Response variables after treatments were aboveground weed biomass and grain yield of spring cereals. The control method of ploughing was most effective in reducing weed biomass compared to root cutting or cover crops. However, compared to the untreated control, a pronounced additive effect of root cutting and cover crops occurred, reducing weed biomass (−57.5%) similar to ploughing (−66%). Pooled over sites, the response was species-specific, with each species showing a distinct reaction to both control methods. C. arvense was most susceptible to root cutting, followed by E. repens, while S. arvensis showed no susceptibility. Crop yield losses were prevented compared to untreated plots by ploughing (+60.57%) and root cutting (+30%), but not by cover crops. We conclude that the combination of non-inversion disturbance and competition is a promising strategy to reduce the reliance on herbicides or inversion tillage in the management of perennial weeds.