Venche Talgø

Research Scientist

(+47) 920 69 664
venche.talgo@nibio.no

Place
Ås H7

Visiting address
Høgskoleveien 7, 1433 Ås

To document

Abstract

The fungus Neonectria fuckeliana has become an increasing problem on Norway spruce (Picea abies) in the Nordic countries during recent years. Canker wounds caused by the pathogen reduce timber quality and top-dieback is a problem for the Christmas tree industry. In this study, four inoculation trials were conducted to examine the ability of N. fuckeliana to cause disease on young Norway spruce plants and determine how different wound types would affect the occurrence and severity of the disease. Symptom development after 8–11 months was mainly mild and lesion lengths under bark were generally minor. However, N. fuckeliana could still be reisolated and/or molecularly detected. Slow disease development is in line with older studies describing N. fuckeliana as a weak pathogen. However, the results do not explain the serious increased damage by N. fuckeliana registered in Nordic forests and Christmas tree plantations. Potential management implications, such as shearing Christmas trees during periods of low inoculum pressure, cleaning secateurs between trees, and removal and burning of diseased branches and trees to avoid inoculum transfer and to keep disease pressure low, are based on experiments presented here and experiences with related pathogens.

To document

Abstract

Phytophthora cryptogea, P. gonapodyides, P. lacustris, P. megasperma, P. plurivora, P. taxon paludosa and an unknown Phytophthora species were isolated from waterways and soil samples in Christmas tree fields in southern Sweden. In addition, P. megasperma was isolated from a diseased Norway spruce (Picea abies) plant from one of the fields in Svalöv. Inoculation tests were sequentially carried out with one isolate from each of the three species P. cryptogea, P. megasperma, and P. plurivora, all known pathogens on conifers. The same three isolates were used to study a few morphological features to confirm the identification, and temperature-growth relationships were carried out to see how well the organisms fit into Swedish climatic conditions. Seedlings of Norway spruce and Nordmann fir (Abies nordmanniana) were inoculated in the roots and the stems. None of the isolates caused extensive root rot under the experimental conditions, but all three species could be re-isolated from both Norway spruce and Nordmann fir. Phytophthora root rot is currently of minor concern for Christmas tree growers in Sweden. However, the Phytophthora isolations from soil and water indicate the presence of this damaging agent, which may lead to future problems.

Abstract

Introduction and purpose: The ability of apple rootstocks to become infected by Neonectria ditissima, the cause of European canker, was studied over two years. Materials and methods: Rootstocks B9 and M9 with a size suitable for grafting (6-10 mm stem diameter, termed rootstocks), and smaller sized rootstocks (<5 mm stem diameter, termed transplants) of B9, M9, M26, MM106 and Antonovka were inoculated with N. ditissima at different times, either with contaminated map pins or with spore suspensions. In addition, the rootstocks were either defeathered (side shoots removed), topped (top shoot headed) or both, to create wounds that would normally occur during propagation, while wounds on transplants were made by removing leaves. Results and discussion: One month after inoculation, slightly sunken canker lesions had developed around the inoculation points of the map pins or wounds. No lesions developed on the non-inoculated controls. Map pin inoculation resulted in 30% to 89% infection and spore suspension sprayed on wounds from 5% to 45% infection. When the cankered areas were split open, brown lesions with necrotic tissue due to infection by N. ditissima appeared. The transplants of M9, M26 and MM106 inoculated with contaminated map pins in 2014 developed necrosis on 40% to 67% of the plants, but there were no differences in the incidence or severity among the different types. On the transplants of B9, Antonovka and M9 inoculated in 2015, there was more necrosis on B9 (42%) than on Antonovka (11%) and more sporulating lesions on B9 (29%) than on M9 (9%) or on Antonovka (4%). Conclusion: It can be concluded that rootstocks used for apple trees may become infected by N. ditissima, and wounds should thus be protected during propagation.

To document

Abstract

Field trials of Abies lasiocarpa were undertaken with the aim of assessing the potential for Christmas tree production in Denmark. Twenty-six provenances originating from Alaska to New Mexico were tested. Damage by the insect Adelges piceae and the fungus Neonectria neomacrospora was recorded for the first time 8 and 12 years after the initial planting. Damage from N. neomacrospora increased rapidly in the period 12–15 years after planting. Trees from the northern provenances and humid climates exhibited less damage than those from southern ones. Previous attack by A. piceae had a minor effect on N. neomacrospora infection. Greenhouse tests showed that detached shoots from healthy Abies lasiocarpa can be used to rank provenances for resistance to N. neomacrospora, but results varied according to host subspecies.

To document

Abstract

The impact of Delphinella shoot blight (Delphinella abietis) and Grovesiella canker (Grovesiella abieticola) on subalpine (Abies lasiocarpa) and corkbark fir (A. lasiocarpa var. arizonica) in a provenance trial in Idaho (ID) was evaluated in 2013. Both pathogens were previously reported from North America on fir species. D. abietis had been found on subalpine fir in USA, but not in ID, and G. abieticola on grand fir (Abies grandis) in ID, but not on subalpine or corkbark fir. D. abietis kills current-year needles and in severe cases buds and shoots, and G. abieticola results in dead shoots and branches and can eventually kill whole trees. Significant differences between provenances in susceptibility to D. abietis and G. abieticola were observed in the provenance trial in ID. In general, subalpine fir was more susceptible to both diseases than corkbark fir. In 2013, D. abietis was also found on subalpine fir in the Puget Sound area of Washington State and G. abieticola was seen on white fir (Abies concolor), but neither disease was detected in native stands of subalpine fir in Washington State. Morphological features of both fungi were described from samples collected in the provenance trial in ID in May 2016.

Abstract

Fire blight, caused by Erwinia amylovora, was detected for the first time in Norway in 1986. It was a limited outbreak on the south-western coast, only on ornamentals, and particularly on Cotoneaster spp. An action group handling the eradication and containment of the disease was quickly established. Comprehensive statutory powers and resources were given by the government to do surveys and eradicate diseased or symptomless but highly susceptible plant species from contaminated areas. These activities have likely restricted fire blight to the western and southern coastal areas. Eastern and northern parts of Norway are considered free from fire blight. The disease has not been observed in important fruit-growing areas. Uncontrolled movement of beehives from areas with fire blight to areas free from the disease has contributed to its introduction to new areas. From 1969 to 2016 import of most host plants of E. amylovora from countries with fire blight was prohibited. A yearly program for annual surveys in parts of the country with commercial fruit-growing and nurseries, using digital maps on internet connected tablets with GPS and software for in situ registrations, proved to be an efficient method for discovering new outbreaks at an early stage, and to start eradication and thus limit further spread.

Abstract

Production of inoculum of Colletotrichum acutatum from both previously infected and overwintered tissue, as well as newly developed plant tissue of sour cherry (Prunus cerasus), was studied in southern Norway. Plant parts were sampled from commercial, private, or research orchards, and incubated for 2 to 14 days (time depended on tissue type) in saturated air at 20°C. In early spring, abundant sporulation was found on scales of overwintered buds and shoots. A mean of 35% infected buds in four cultivars was observed, with a maximum of 72% of the buds infected in one of the samples. Over 3 years, the seasonal production of overwintered fruit and peduncles of cv. Fanal infected the previous year was investigated. In all three years, the infected plant material was placed in the trees throughout the winter and the following growing season; in two of the years, fruit and peduncles were also placed on the ground in the autumn or the following spring. Old fruit and peduncles formed conidia throughout the season, with a peak in May and June. Spore numbers declined over the season, but the decline was more rapid for plant material on the ground than in the trees. On average over 2 years, 68.7, 24.0, or 7.3% of the inoculum came from fruit placed in the trees, placed on the ground in spring, or placed on the ground the preceding autumn, respectively. The number of fruit and peduncles attached to the trees in a planting of cv. Hardangerkirsebær was followed from February to July one year, and although there was a decline over time, fruit and/or their peduncles were still attached in substantial numbers in July, thus illustrating their potential as sources of inoculum. In observations over 2 years in a heavily infected orchard of cv. Stevnsbær, 75 and 47% of flowers and newly emerged fruit, respectively, were infected. Artificially inoculated flowers and fruit produced conidia until harvest, with a peak in mid-July. It may be concluded that previously infected and overwintered, as well as newly emerged tissue of sour cherry, may serve as sources of inoculum of C. acutatum throughout the growing season.

Abstract

On September 6th – 11th in 2015, the Norwegian Institute of Bioeconomy Research (NIBIO) organized The 12th International Christmas Tree Research and Extension Conference (CTREC) at Honne, Norway. Around 40 participants from Australia, Austria, Canada, Denmark, France, Greece, Hungary, Iceland, Norway, UK, and USA gathered to share skills and recent research related to Christmas tree production and marketing. Nearly 50 presentations (oral and poster) were given during the conference covering the following topics; Breeding & genetic, Insects, Tree health, Physiology, Growth conditions & integrated pest management, Postharvest, and Market & economy. Abstracts, extended abstracts or papers from all presentations are available in this proceedings.

To document

Abstract

The fungus Neonectria neomacrospora has recently caused an epidemic outbreak in conifer species within the genus Abies in Denmark and Norway. Christmas tree producers in Europe and North America rely, to a large extent, on Abies species. The damage caused by N. neomacrospora, including dead shoot tips, red flagging of branches and potentially dead trees, have therefore caused concern about reduced quality and loss of trees, and thereby of revenue. Field observations of natural infection of 39 taxa, from 32 species, within the genus Abies in the Hørsholm Arboretum, Denmark, were evaluated; significant differences were seen between taxa, that is, species, and between some species and their subspecies. The Greek fir, Abies cephalonica, was the only species without damage. An inoculation experiment on detached twigs with mycelium plugs from a N. neomacrospora culture showed that all species could be infected. The damage observed in the inoculation experiment could explain 30% of the variation in the field observations based on species mean values. The epidemic outbreak and the high number of species susceptible to this fungus indicate that N. neomacrospora requires attention in the cultivation and conservation of Abies species.

To document

Abstract

Delphinella shoot blight (Delphinella abietis) attacks true firs (Abies spp.) in Europe and North America. Especially subalpine fir (A. lasiocarpa), one of the main Christmas tree species in Norway, is prone to the disease. The fungus kills current year needles, and in severe cases entire shoots. Dead needles become covered with black fruiting bodies, both pycnidia and pseudothecia. Delphinella shoot blight has mainly been a problem in humid, coastal regions in the northwestern part of Southern Norway, but, probably due to higher precipitation in inland regions during recent years, heavy attacks were found in 2011 in a field trial with 76 provenances of subalpine fir in Southeastern Norway. However, the amount of precipitation seemed less important once the disease had established in the field. Significant differences in susceptibility between provenances were observed. In general, the more bluish the foliage was, the healthier the trees appeared. The analysis of provenance means indicated that, at least for the southern range, the disease ratings were correlated with foliage color. This study also includes isolation, identification, a pathogenicity test, a seed test and electron microscopy of the wax layer on the needles. The fungus was identified based on the morphology of spores and by sequencing the Internal Transcribed Spacer (ITS) regions of the ribosomal DNA. Koch’s postulates were fulfilled. The fungus was found present on newly harvested seeds and may therefore spread via international seed trade. When comparing the wax layers on green and blue needles, those of the latter were significantly thicker, a factor that may be involved in disease resistance.

To document

Abstract

No abstract has been registered

Abstract

In 2008, an epidemic caused by a new Neonectria sp. was discovered on white fir (Abies concolor) in several counties in southern Norway [1]. Later the pathogen was also found on other fir species in Norway and Denmark [2]. Typical symptoms and signs were dead shoots, flagging (dead branches), canker wounds, heavy resin flow, and occasionally red fruiting bodies (perithecia). Pathogenicity tests on several Abies spp. proved the fungus to be very aggressive, which corresponds well with observations of mortality of white fir and subalpine fir (A. lasiocarpa) from different age classes under field conditions. Sequencing of the internal transcribed regions (ITS) of the ribosomal DNA showed that this Neonectria sp. was most similar to N. ditissima (only 5 bp different from isolates in the GenBank), a common pathogen worldwide on broad leaf trees. The ITS sequences were very different (> 20 bp) from N. fuckeliana, a well-known fungus on Norway spruce in Scandinavia and other parts of the world, especially in the northern hemisphere. In 2011, the new Neonectria species was found on diseased trees in a Danish nordmann fir (Abies nordmanniana) seed orchard. Resin flow was seen from mature cones, and tests revealed that the seeds were infected by the Neonectria sp.

Abstract

Winter damage caused by frost is frequently observed on common ash (Fraxinus excelsior) in Norway. In spring 2007, extensive winter damage most likely camouflaged ash dieback caused by Chalara fraxinea. In 2008, ash dieback caused by C. fraxinea had spread to large areas in the southern part of Norway. The disease was widespread in forests and nurseries, but also on roadside trees, and in gardens and parks. In 2009, the disease had spread to new areas; about 30 km into Rogaland county in southwestern Norway and also further into some valleys in southeastern Norway.

Abstract

Sydowia polyspora is a pathogenic, seed borne fungus on conifers [1]. It is especially troublesome in the Christmas tree industry, where it causes current season needle necrosis (CSNN) on fir (Abies spp.). Needles get chlorotic spots or bands and in severe cases the entire needles turn necrotic and shed. The fungus also commonly kills current year shoots (Sclerophoma shoot dieback) on both fir and spruce (Picea spp.). The latter we proved on subalpine fir (A. lasiocarpa) inoculated by S. polyspora from noble fir (Abies procera) seeds. Two conifer seed lots known from previous tests to contain a high percentage of S. polyspora were selected for a treatment experiment; alpine pine (Pinus mugo var. rotundata) and Noble fir. Both seed lots received the following five treatments; surface sterilized (10 sec. in 70 % ethanol plus 90 sec. in 0,5 % NaOCl), dipped in 15 % acidic acid, mixed with 0,36 gram Signum (boskalid and pyraklostrobin) per 100 gram seeds, mixed with 0,8 gram Mycostop (Streptomyces griseovirides) per 100 gram seeds, dipped in different concentrations of thyme oil (extracted from Thymus vulgaris), and control (no treatment). Based on the results we recommend Signum for conifer seed treatment. This fungicide controlled S. polyspora well and did not influence on the germination ability. Agricultural

Abstract

In Norway, Nordmann fir (Abies nordmanniana) and subalpine fir (A. lasiocarpa) are the dominant Christmas tree species, and noble fir (A. procera) the dominant bough plant species. To determine if fungi found to cause diseases on fir in Norway might be seed borne, samples from twelve seed lots, including Nordmann fir from Austria, Georgia and Russia, subalpine fir from Canada and Norway and noble fir from Norway were tested using agar plate methods (PDA and WA). The most important finding was that Sydowia polyspora was present on seed from all firs from all countries (nine samples infected, 0.5 - 85 % infected seeds). Recently, it has been demonstrated in Norway that this fungus is the cause of current season needle necrosis (CSNN), which is considered a major disease in the Christmas tree and bough production both in Europe and USA. Sirococcus coniguenus was found in a Norwegian A. procera seed lot (31% infected seeds), which to our knowledge is the first report of this pathogen on fir seeds. Caloscypha fulgens was detected on subalpine fir seed from Canada. In addition the following fungal genera were detected: Acremoniella, Acremonium, Alternaria, Aspergillus, Botrytis, Chaetomium, Cladosporium, Diaphorte, Dictyopolyschema, Epicoccum, Fusarium, Genicularia, Mucor, Neonectria, Penicillium, Phoma, Rhizopus, Sordaria, Trichoderma, Trichothecium, and an unidentified fungus.

To document

Abstract

Current season needle necrosis (CSNN) has been a serious foliage disorder on true fir Christmas trees and bough material in Europe and North America for more than 25 y. Approximately 2-4 weeks after bud break, needles develop chlorotic spots or bands that later turn necrotic. The symptoms have been observed on noble fir (Abies procera), Nordmann fir (A. nordmanniana) and grand fir (A. grandis) on both continents. CSNN was reported as a physiological disorder with unknown aetiology from USA, Denmark, and Ireland, but was associated with the fungus Kabatina abietis in Germany, Austria and Norway. In 2007, a fungus that morphologically resembled K. abietis was isolated from symptomatic needle samples from Nordmann fir from Austria, Denmark, Germany, Norway, and USA. Sequencing of the internal transcribed spacer (ITS) region of ribosomal DNA of these cultures, plus a K. abietis reference culture from Germany (CBS 248.93), resulted in Hormonema dematioides, the imperfect stage of Sydowia polyspora, and thus the taxonomy is further discussed. Inoculation tests on Nordmann fir seedlings and transplants with isolates of S. polyspora from all five countries resulted in the development of CSNN symptoms. In 2009, S. polyspora was also isolated from symptomatic needles from Nordmann fir collected in Slovakia. (c) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Abstract

European ash (Fraxinus excelsior), also known as common ash, occurs naturally inland in lower areas of southeastern Norway and along the southern coast of the country. It is important both as a forest and ornamental tree. During the last decade, dieback has become a disastrous disease on F. excelsior in many European countries. The anamorphic fungus Chalara fraxinea T. Kowalski (1), described for the first time from dying ash trees in Poland, is now considered the cause of ash dieback (2). In May of 2008, C. fraxinea was isolated from 1.5 m high diseased F. excelsior in a nursery in Østfold County in southeastern Norway. Symptoms included wilting, necrotic lesions around leaf scars and side branches, and discoloration of the wood. From symptomatic branches, small pieces (approximately 1 cm3) were excised in the transition area between healthy and discolored wood. After surface sterilization (10 s in 70% ethanol + 90 s in NaOCl), the pieces were air dried for 1 min in a safety cabinet, cut into smaller pieces, and placed on media. The fungus was isolated on potato dextrose agar (PDA) and water agar (WA). On PDA, the cultures were tomentose, light orange, and grew slowly (21 mm mean colony diameter after 2 weeks at room temperature). Typical morphological features of C. fraxinea developed in culture. Brownish phialides (14.8 to 30.0 [19.5] × 2.5 to 5.0 [4.1] μm, n = 50) first appeared in the center of the colonies on the agar plugs that had been transferred. The agar plugs were 21 days old when phialides were observed. Abundant sporulation occurred 3 days later. Conidia (phialospores) extruded apically from the phialides and formed droplets. Conidia measured 2.1 to 4.0 (3.0) × 1.4 to 1.9 (1.7) μm (n = 50). The first-formed conidia from each phialide were different in size and shape from the rest by being longer (6 μm, n = 10) and more narrow in the end that first appeared at the opening of the phialide. Internal transcribed spacer sequencing confirmed that the morphological identification was correct (Accession No. EU848544 in GenBank). A pathogenicity test was carried out in June of 2008 by carefully removing one leaf per plant on 10 to 25 cm high F. excelsior trees (18 trees) and placing agar plugs from a 31-day-old C. fraxinea culture (isolate number 10636) on the leaf scars and covering with Parafilm. After 46 days, isolations were carried out as described above from discolored wood that had developed underneath necrotic lesions in the bark and subsequently caused wilting of leaves. All the inoculated plants showed symptoms, and C. fraxinea was successfully reisolated. No symptoms were seen on uninoculated control plants (eight trees) that had received the same treatment except that sterile PDA agar plugs had been used.