Nagothu Udaya Sekhar

Senior Research Scientist

Division of Environment and Natural Resources

Water Resources

(+47) 990 15 621
nagothu.udayasekhar@nibio.no

Place
Ås F20

Visiting address
Fredrik A. Dahls vei 20, 1430 Ås

To document

Abstract

Bangladesh often suffers from droughts and floods that cause substantial harm to households and communities. The frequency of such events is expected to increase with climate change. Assessing the vulnerability to climate change is a promising evaluation tool that can assist in identifying and improving adaptation strategies at various geographical scales. In this paper, we examine the vulnerability status of two regions in Bangladesh, one in the north, which is frequently impacted by severe droughts, and one in the south, which is exposed to regular flooding, high water, and salinity. We evaluate the exposure, sensitivity and adaptive capacity of each region using demographic, agro-economic, infrastructural, and biophysical indicators. We consider information obtained in a literature review, interviews with local experts, household surveys, and field visits in the study areas. We use principal components analysis to assess vulnerability to climate change between and within the north and south regions. The flood-prone, saline region in the south appears less vulnerable to climate change the northern drought prone areas, although further validation is needed.

To document

Abstract

Approximately 70% of shrimp consumed globally is farmed. India is ranked among the top five shrimp farming countries globally, and occurs mainly in the eastern coastal state of Andhra Pradesh (AP). More than 90% of the farms are less than 2 ha and are farmer owned, operated and managed. The objective of this study was to increase our understanding of climatic and socio-economic factors influencing this sector, through a survey of 300 shrimp farmers in AP in 2009/10. The farming communities were divisible into two groups: members of a society/cooperative and those operating individually. The latter were large scale adopting more intensive practices. The average production cost was Indian Rupees (IRS) 80,186 ha-1 and net income in summer and winter was IRS 221,901 and IRS 141,715, respectively. The mean technical efficiency estimated using Stochastic frontier function was 7% and 54%. The present study attempts to explain the difference in efficiencies using socio-economic and climatic variables, the latter being a novel approach. Among socio-economic variables, farming experience and membership in society were found to have a significant influence to improve technical and economic efficiencies. Further improvements in identifiable facets of the practices and a consequent increase in technical efficiency will make the sector less vulnerable to climatic change impacts.