To document

Abstract

Shallot (Allium cepa var. aggregatum) is an important vegetable crop belonging to the genus Allium. The present study attempted to develop an efficient droplet-vitrification cryopreservation method for shallot ‘10603’ shoot tips. In vitro stock shoots were maintained on Murashige and Skoog (1962) medium (MS) supplemented with 30 g L-1 sucrose, 0.5 mg L-1 BAP, 0.1 mg L-1 NAA and 8 g L-1 agar (pH=5.8). Shoot tips (2.0-3.0 mm in length) were excised from 4-week-old stock shoots and stepwise precultured with increased sucrose concentrations from 0.3 to 0.5 M, each concentration for 1 day. The precultured shoot tips were then loaded for 20 min with a solution composed of 2 M glycerol and 0.5 M sucrose, before exposure to PVS3 for 3 h at room temperature. Dehydrated shoot tips were transferred onto aluminum foils (2×0.8 cm), prior to direct immersion into liquid nitrogen (LN) for cryostorage. For thawing, frozen aluminum foils were moved from LN and immediately transferred into unloading solution composed of liquid MS containing 1.2 M sucrose. After incubation at room temperature for 20 min, shoot tips were post-cultured on solidified MS medium containing 0.3 M sucrose for 2 days and then transferred onto a recovery medium for shoot regrowth. With this procedure, 94% shoot tips survived, and 58% shoot tips regenerated into shoots following cryopreservation.

To document

Abstract

The present study described a droplet-vitrification cryopreservation for shoot tips of shallot (Allium cepa var. aggregatum), a small bulb onion. Shoot tips taken from in vitro stock shoots were precultured with 0.3 M and 0.5 M of sucrose, with 1 day for each concentration. Precultured shoot tips were treated with a loading solution containing 2 M glycerol and 0.6 M sucrose for 20 min and then exposed to plant vitrification solution 3 (PVS3) at 24 °C for 3 h of dehydration. Following exposure to PVS3, shoot tips were moved onto 5.0 μl PVS3 droplets on aluminum foil strips, followed by direct immersion into liquid nitrogen for 1 h. Frozen shoot tips were thawed by incubation in liquid MS medium containing 1.2 m sucrose for 20 min at room temperature, and then post-thaw cultured for shoot regrowth. Exposure of the shoot tips to PVS3 produced shoot regrowth (58%). Differential scanning calorimetry (DSC) detected 1.8% of freezable water in the shoot tips that had been dehydrated by PVS2, and no freezable water in those by PVS3 treatment. Exposure to PVS3 provided a broader safe temperature range (− 196 °C to − 88 °C), compared to that (− 196 °C to − 116 °C) of PVS2, for cryopreserved samples. Histological observations found that PVS3 dehydration allowed many cells in the apical dome and in the leaf primordia to survive following freezing in LN, while PVS2 dehydration resulted in much fewer surviving cells in the apical dome. The droplet-vitrification cryopreservation produced 56%, 72% and 32% shoot regrowth in cryopreserved shoot tips taken from in vitro shoots, adventitious buds regenerated from stem discs and field-grown bulbs, respectively. Advantages and disadvantages of the use of different source explants for cryopreservation were discussed. The droplet-vitrification cryopreservation produced 45% and 70% shoot regrowth in the additional two shallot genotypes ‘Kverve’ and ‘Lunteviga’. The results obtained in this study provide technical supports for setting-up cryo-bankings of genetic resources of shallots and other Allium species.

To document

Abstract

Chronic Hepatitis B Virus (HBV) infection leads to severe liver pathogenesis associated with significant morbidity and mortality. As no curable medication is yet available, vaccination remains the most costeffective approach to limit HBV spreading and control the infection. Although safe and efficient, the standard vaccine based on production of the small (S) envelope protein in yeast fails to elicit an effective immune response in about 10% of vaccinated individuals, which are at risk of infection. One strategy to address this issue is the development of more immunogenic antigens. Here we describe a novel HBV antigen obtained by combining relevant immunogenic determinants of S and large (L) envelope proteins. Our approach was based on the insertion of residues 21-47 of the preS1 domain of the L protein (nomenclature according to genotype D), involved in virus attachment to hepatocytes, within the external antigenic loop of S. The resulting S/preS121-47 chimera was successfully produced in HEK293T and Nicotiana benthamiana plants, as a more economical recombinant protein production platform. Comparative biochemical, functional and electron microscopy analysis indicated assembly of the novel antigen into subviral particles in mammalian and plant cells. Importantly, these particles preserve both S- and preS1-specific epitopes and elicit significantly stronger humoral and cellular immune responses than the S protein, in both expression systems used. Our data promote this antigen as a promising vaccine candidate to overcome poor responsiveness to the conventional, S protein-based, HBV vaccine.

To document

Abstract

The hepatitis C virus (HCV) is a major etiologic agent for severe liver diseases ( e.g . cirrhosis, fibrosis and hepatocellular carcinoma). Approximately 140 million people have chronic HCV infections and about 500 000 die yearly from HCV-related liver pathologies. To date, there is no licensed vaccine available to prevent HCV infection and production of a HCV vaccine remains a major challenge. Here, we report the successful production of the HCV E1E2 heterodimer, an important vaccine candidate, in an edible crop (lettuce, Lactuca s ativa ) using Agrobacterium - mediated transient expression technology. The wild-type dimer (E1E2) and a variant without an N-glycosylation site in the E2 polypeptide (E1E2 Δ N6) were expressed, and appropriate N-glycosylation pattern and functionality of the E1E2 dimers were demonstrated. The humoral immune response induced by the HCV proteins was investigated in mice following oral administration of lettuce antigens with or without previous intramuscular prime with the mammalian HEK293T cell-expressed HCV dimer. Immunization by oral feeding only resulted in development of weak serum levels of anti-HCV IgM for both antigens; however, the E1E2 Δ N6 proteins produced higher amounts of secretory IgA, suggesting improved immunogenic properties of the N-glycosylation mutant. The mice group receiving the intramuscular injection followed by two oral boosts with the lettuce E1E2 dimer developed a systemic but also a mucosal immune response, as demonstrated by the presence of anti-HCV secretory IgA in faeces extracts. In summary, our study demonstrates the feasibility of producing complex viral antigens in lettuce, using plant transient expression technology, with great potential for future low-cost oral vaccine development.

Abstract

Chrysanthemum stunt viroid (CSVd) was first reported in US in the 1940s and is widespread in the world wherever chrysanthemum is grown. Cryotherapy of shoot tips, a new biotechnology developed in the recent years, is a novel application of plant cryopreservation techniques that allows pathogen eradication at a high frequency. Existing studies have proven that this technique can efficiently eradicate pathogens such as virus, phytoplasma and bacterium. However, up to now, there has been no report on viroid eradication. In the present study, we attempted to establish a droplet vitrification cryotherapy method for Argyranthemum and to apply it to eradicate CSVd. Results obtained so far demonstrated that cryotherapy of shoot tips alone failed to eradicate CSVd from the infected shoot tips of Argyranthemum maderense ‘Yellow Empire’. Using in situ hybridization of CSVd and histological analysis, we found that CSVd can invade meristematic cells and at the same time, these cells were able to survive following cryotherapy. These findings explained why cryotherapy of shoot tips alone could not be efficient enough to eradicate CSVd from the diseased materials. Further studies combining cold treatment with cryotherapy are under investigation for CSVd eradication.

To document

Abstract

Euphorbia pulcherrima, poinsettia, is a non-food and non-feed vegetatively propagated ornamental plant. Appropriate plant height is one of the most important traits in poinsettia production and is commonly achieved by application of chemical growth retardants. To produce compact poinsettia plants with desirable height and reduce the utilization of growth retardants, the Arabidopsis SHORT INTERNODE (AtSHI) gene controlled by the cauliflower mosaic virus 35S promoter was introduced into poinsettia by Agrobacterium-mediated transformation. Three independent transgenic lines were produced and stable integration of transgene was verified by PCR and Southern blot analysis. Reduced plant height (21–52%) and internode lengths (31–49%) were obtained in the transgenic lines compared to control plants. This correlates positively with the AtSHI transcript levels, with the highest levels in the most dwarfed transgenic line (TL1). The indole-3-acetic acid (IAA) content appeared lower (11–31% reduction) in the transgenic lines compared to the wild type (WT) controls, with the lowest level (31% reduction) in TL1. Total internode numbers, bract numbers and bract area were significantly reduced in all transgenic lines in comparison with the WT controls. Only TL1 showed significantly lower plant diameter, total leaf area and total dry weight, whereas none of the AtSHI expressing lines showed altered timing of flower initiation, cyathia abscission or bract necrosis. This study demonstrated that introduction of the AtSHI gene into poinsettia by genetic engineering can be an effective approach in controlling plant height without negatively affecting flowering time. This can help to reduce or avoid the use of toxic growth retardants of environmental and human health concern. This is the first report that AtSHI gene was overexpressed in poinsettia and transgenic poinsettia plants with compact growth were produced.

Abstract

Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2-3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single- and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgene-derived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated.