Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2022
Abstract
Reusing soil can reduce environmental impacts associated with obtaining natural fresh soil during road construction and analogous activities. However, the movement and reuse of soils can spread numerous plant diseases and pests, including propagules of weeds and invasive alien plant species. To avoid the spread of barnyardgrass in reused soil, its seeds must be killed before that soil is spread to new areas. We investigated the possibility of thermal control of barnyardgrass seeds using a prototype of a stationary soil steaming device. One Polish and four Norwegian seed populations were examined for thermal sensitivity. To mimic a natural range in seed moisture content, dried seeds were moistened for 0, 12, 24, or 48 h before steaming. To find effective soil temperatures and whether exposure duration is important, we tested target soil temperatures in the range 60 to 99 C at an exposure duration of 90 s (Experiment 1) and exposure durations of 30, 90, or 180 s with a target temperature of 99 C (Experiment 2). In a third experiment, we tested exposure durations of 90, 180, and 540 s at 99 C (Experiment 3). Obtaining target temperatures was challenging. For target temperatures of 60, 70, 80, and 99 C, the actual temperatures obtained were 59 to 69, 74 to 76, 77 to 83, and 94 to 99 C, respectively. After steaming treatments, seed germination was followed for 28 d in a greenhouse. Maximum soil temperature affected seed germination, but exposure duration did not. Seed premoistening was of influence but varied among temperatures and populations. The relationships between maximum soil temperature and seed germination were described by a common dose–response function. Seed germination was reduced by 50% when the maximum soil temperature reached 62 to 68 C and 90% at 76 to 86 C. For total weed control, 94 C was required in four populations, whereas 79 C was sufficient in one Norwegian population.
Authors
Katherine Ann Gredvig Nielsen Magne Nordang Skårn Venche Talgø Martin Pettersson Inger Sundheim Fløistad Gunn Strømeng May Bente Brurberg Arne StensvandAbstract
No abstract has been registered
Abstract
Established invasive alien plant species make it difficult and costly to move and make use of infested soil in public and private construction work. Stationary soil steaming as a non-chemical control method has the potential to disinfect soil masses contaminated with seeds and other propagative plant materials. The outcome can vary depending on steaming temperature and duration. Higher temperatures and longer durations are relatively more efficient but may also have side-effects including change in soil physical and chemical characteristics. Barnyard grass (Echinochloa crus-galli) is among troublesome invasive species in Norway. We have tested different steam duration at 99°C to find the possible lowest effective exposure duration for killing seeds of this annual grass species. Four replications of 40 barnyard grass dry seeds of one population were placed in polypropylene-fleece bags (9*7 cm), moistened for 12 hours, and covered by the soil at a depth of 7 cm in 60*40*20 cm boxes. The boxes with soil and bags were steamed at 99°C for 1.5, 3 and 9 min. The bags including steamed seeds were taken out, opened, placed on soil surface in pots and covered by a thin layer of soil. The pots were placed in greenhouse and watered from below and seed germination was followed for a month. Moistened non-steamed seeds were used as control. It was shown that steaming at 99°C gave 0% germination indicating that 100% of the seeds were killed regardless of exposure duration while in the control seed germination was 100%. Consequently, to achieve an efficacy of 100%, exposure duration of 1.5 min would be enough. Finding the lowest possible steam temperature and exposure duration to get the highest possible seed killing in a seed mixture of different plant species as well as other factors to increase the heat transferability are under investigation. Keywords: Echinochloa crus-galli; Resource recovery; Steaming temperature and duration; Thermal soil disinfection
2021
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Background The Norwegian forest resource map (SR16) maps forest attributes by combining national forest inventory (NFI), airborne laser scanning (ALS) and other remotely sensed data. While the ALS data were acquired over a time interval of 10 years using various sensors and settings, the NFI data are continuously collected. Aims of this study were to analyze the effects of stratification on models linking remotely sensed and field data, and assess the accuracy overall and at the ALS project level. Materials and methods The model dataset consisted of 9203 NFI field plots and data from 367 ALS projects, covering 17 Mha and 2/3 of the productive forest in Norway. Mixed-effects regression models were used to account for differences among ALS projects. Two types of stratification were used to fit models: 1) stratification by the three main tree species groups spruce, pine and deciduous resulted in species-specific models that can utilize a satellite-based species map for improving predictions, and 2) stratification by species and maturity class resulted in stratum-specific models that can be used in forest management inventories where each stand regularly is visually stratified accordingly. Stratified models were compared to general models that were fit without stratifying the data. Results The species-specific models had relative root-mean-squared errors (RMSEs) of 35%, 34%, 31%, and 12% for volume, aboveground biomass, basal area, and Lorey’s height, respectively. These RMSEs were 2–7 percentage points (pp) smaller than those of general models. When validating using predicted species, RMSEs were 0–4 pp. smaller than those of general models. Models stratified by main species and maturity class further improved RMSEs compared to species-specific models by up to 1.8 pp. Using mixed-effects models over ordinary least squares models resulted in a decrease of RMSE for timber volume of 1.0–3.9 pp., depending on the main tree species. RMSEs for timber volume ranged between 19%–59% among individual ALS projects. Conclusions The stratification by tree species considerably improved models of forest structural variables. A further stratification by maturity class improved these models only moderately. The accuracy of the models utilized in SR16 were within the range reported from other ALS-based forest inventories, but local variations are apparent.
Authors
Stefano Puliti Johannes Breidenbach Johannes Schumacher Marius Hauglin Torgeir Ferdinand Klingenberg Rasmus AstrupAbstract
This study aimed at estimating total forest above-ground net change (ΔAGB; Gg) over five years (2014–2019) based on model-assisted estimation utilizing freely available satellite imagery. The study was conducted for a boreal forest area (approx. 1.4 Mha) in Norway where bi-temporal national forest inventory (NFI), Sentinel-2, and Landsat data were available. Biomass change was modelled based on a direct approach. The precision of estimates using only the NFI data in a basic expansion estimator was compared to four different alternative model-assisted estimates using 1) Sentinel-2 or Landsat data, and 2) using bi- or uni-temporal remotely sensed data. We found that spaceborne optical data improved the precision of the purely field-based estimates by a factor of up to three. The most precise estimates were found for the model-assisted estimation using bi-temporal Sentinel-2 (standard error; SE = 1.7 Gg). However, the decrease in precision when using Landsat data was small (SE = 1.92 Gg). We also found that ΔAGB could be precisely estimated when remotely sensed data were available only at the end of the monitoring period. We conclude that satellite optical data can considerably improve ΔAGB estimates, when repeated and coincident field data are available. The free availability, global coverage, frequent update, and long-term time horizon make data from programs such as Sentinel-2 and Landsat a valuable data source for consistent and durable monitoring of forest carbon dynamics.
Abstract
No abstract has been registered
Abstract
Key message Large-scale forest resource maps based on national forest inventory (NFI) data and airborne laser scanning may facilitate synergies between NFIs and forest management inventories (FMIs). A comparison of models used in such a NFI-based map and a FMI indicate that NFI-based maps can directly be used in FMIs to estimate timber volume of mature spruce forests. Context Traditionally, FMIs and NFIs have been separate activities. The increasing availability of detailed NFI-based forest resource maps provides the possibility to eliminate or reduce the need of field sample plot measurements in FMIs if their accuracy is similar. Aims We aim to (1) compare a timber volume model used in a NFI-based map and models used in a FMI, and (2) evaluate utilizing additional local sample plots in the model of the NFI-based map. Methods Accuracies of timber volume estimates using models from an existing NFI-based map and a FMI were compared at plot and stand level. Results Estimates from the NFI-based map were similar to or more accurate than the FMI. The addition of local plots to the modeling data did not clearly improve the model of the NFI-based map. Conclusion The comparison indicates that NFI-based maps can directly be used in FMIs for timber volume estimation in mature spruce stands, leading to potentially large cost savings.
Abstract
Forest harvest residue is a low-competitive biomass feedstock that is usually left to decay on site after forestry operations. Its removal and pyrolytic conversion to biochar is seen as an opportunity to reduce terrestrial CO2 emissions and mitigate climate change. The mitigation effect of biochar is, however, ultimately dependent on the availability of the biomass feedstock, thus CO2 removal of biochar needs to be assessed in relation to the capacity to supply biochar systems with biomass feedstocks over prolonged time scales, relevant for climate mitigation. In the present study we used an assembly of empirical models to forecast the effects of harvest residue removal on soil C storage and the technical capacity of biochar to mitigate national-scale emissions over the century, using Norway as a case study for boreal conditions. We estimate the mitigation potential to vary between 0.41 and 0.78 Tg CO2 equivalents yr−1, of which 79% could be attributed to increased soil C stock, and 21% to the coproduction of bioenergy. These values correspond to 9–17% of the emissions of the Norwegian agricultural sector and to 0.8–1.5% of the total national emission. This illustrates that deployment of biochar from forest harvest residues in countries with a large forestry sector, relative to economy and population size, is likely to have a relatively small contribution to national emission reduction targets but may have a large effect on agricultural emission and commitments. Strategies for biochar deployment need to consider that biochar's mitigation effect is limited by the feedstock supply which needs to be critically assessed.