Gry Alfredsen

Research Professor

(+47) 918 76 568
gry.alfredsen@nibio.no

Place
Ås H8

Visiting address
Høgskoleveien 8, 1433 Ås

To document

Abstract

The biological durability of ten wood species was determined on the basis of results from laboratory agar block tests. The experiment utilised two specimen formats: standard EN 113-2 specimens (15 × 25 × 50 mm) and mini-blocks (5 × 10 × 30 mm) exposed to two fungi (Coniophora puteana and Trametes versicolor) for varying incubation periods. Mini-block tests yield dissimilar outcomes compared to the European standard test at six, eight, ten or 16 weeks of incubation. This discrepancy extended to both durability classifications based on median percentage mass loss and those based on relative mass loss (x-values). It was therefore concluded that laboratory tests with miniaturised specimens are not advisable as a substitute for conventional durability classification assessments.

To document

Abstract

Extended Multiplicative Signal Correction (EMSC) is a multivariate linear modelling technique for multi-channel measurements that can identify and correct for different types of systematic variation patterns, known or unknown. It is typically used for pre-processing to separate light absorbance spectra, obtained by diffuse reflectance of intact samples, into three main sources of variation: additive variations due to chemical composition (≈Beer's law), mixed multiplicative and additive variations due to physical light scattering (≈Lambert's law) and more or less random measurement noise. The present work evaluates the use of EMSC to pre-process near infrared spectra obtained by hyperspectral imaging of Scots pine sapwood, inoculated with two different basidiomycete fungi and at various degradation stages. The spectral changes due to fungal decay and resulting mass loss are assessed by interpretation of the EMSC parameters and the partial least squares regression (PLSR) results. Including a cellulose (analyte) or bound water (interferent) spectral profile in the EMSC pre-processing model generally improves the predictive performance of the PLS modelling, but it can also make it worse. The inclusion of the additional polynomial baselines does not necessarily lead to a better separation of the physical and chemical effects present in the spectra. The estimated EMSC parameters provide insight into the differences in decay mechanisms. A detailed analysis of the EMSC results highlights advantages and disadvantages of using a complex pre-processing model.

Abstract

Deadwood represents a dynamic carbon pool in forest ecosystems where microbial decomposition causes fluxes of CO2 to the atmosphere through respiration and organic carbon to the soil through leakage and fragmentation. This study characterises different stages of deadwood of Norway spruce (Picea abies). 35 Norway spruce trees were sampled and categorized on a 0–5 decay scale. For the 14 trees in classes 0–3, two stem discs were collected from two heights. For the 21 trees in classes 4 and 5, a single sample per tree was taken, because decay was relatively uniform throughout the stem. The relative amount of hemicellulose and cellulose declined moderately from decay class 1 to 3 and substantially from decay class 3 to class 4 but small amounts were still present in decay class 5. The relative lignin proportion increased substantially from decay class 3 to 4 and dominated in decay class 5. Relative carbon content increased from 50 to 56% during the decomposition process due to the increasing accumulation of lignin residuals being a typical signature of brown rot decay. A laboratory experiment including three species of brown rot fungi verified decomposition close to 70% of Norway spruce biomass and resulted in 55% carbon content. This was similar to the carbon content in decay class 4 and 5. A novel approach is presented to quantify the carbon flux from deadwood to the soil. First, we calculated the residual proportion of carbon in decayed wood compared to the initial carbon content of live trees. Subsequently, we extended the calculation to determine the amount of remaining carbon from non-decayed wood that was transferred to the soil during each decay class. The approach showed that Norway spruce wood decomposition under field conditions transfers at least 39–47% of the initial wood carbon to the soil carbon pool, depending on soil type. This strengthens the previously under-communicated fact that the carbon flux from deadwood to soil is higher from brown rot decomposition in boreal forests than the corresponding carbon flux in temperate and tropical forests where deadwood is more influenced by white rot fungi.