Gunnhild Søgaard

Head of Department/Head of Research

(+47) 917 27 960
gunnhild.sogaard@nibio.no

Place
Ås H8

Visiting address
Høgskoleveien 8, 1433 Ås

Abstract

Removal of logging residues causes significant nutrient losses from the harvesting site. Furthermore,collection of residues into piles could lead to small-scale differences in establishment conditions for seedlings. We studied the effects of stem-only (SOH) and aboveground whole-tree harvesting (WTH) on Norway spruce (Picea abies) seedling growth and pine weevil (Hylobius abietis) damage at two sites (SE and W Norway). We also compared two planting environments within the WTH plots (WTH-0: areas with no residues, WTH-1: areas where residue piles had been placed and removed before planting). In practice, one-third of the residues were left on site after WTH. After three growing seasons there were no differences for height or diameter increment between SOH and WTH (WTH-1 and WTH-0 combined) treatments. However, relative diameter increment was largest for WTH-1 seedlings and lowest for WTH-0 seedlings. Few seedlings sustained pine weevil attacks at the W Norway site, with no differences among treatments. At the SE Norway site, the percent of seedlings damaged by pine weevils and average debarked area were significantly higher after WTH (82% and 3.3 cm2) compared to SOH (62% and 1.7 cm2). We conclude that WTH may lead to spatial differences in establishment conditions.

Abstract

Miljødirektoratet utarbeidet i 2014 et kunnskapsgrunnlag for hvordan vi kan omstille Norge til et lavutslippssamfunn (Miljødirektoratet 2014). I rapporten ble en rekke tiltak i skog beskrevet. Denne rapporten er en del av neste fase av dette arbeidet, som er å utdype analysen av mulige tiltak og virkemidler. Her beskriver vi, på oppdrag fra Miljødirektoratet, et utvalg klimatiltak i skog. Det er på ingen måte noen uttømmende oversikt over klimatiltak, men dekker et utvalg som det var ønske om å belyse nærmere. Disse er belyst nærmere med hovedvekt på karbonopptak og –lagring. Betydning for andre økosystemtjenester, som for eksempel biodiversitet og friluftsliv, er ikke belyst. Hovedkonklusjonene fra dette arbeidet kan kort oppsummeres slik: Fra 1990 og frem til 2012 har et bruttoareal på 1,4 mill. daa blitt avskoget (NIR 2014). Basert på data fra Landsskogtakseringen ser vi at den viktigste årsaken er nedbygging av skogareal til ulike formål (73 % av arealet), etterfulgt av omdisponering til beite (16 %). Om lag 29 % av skogen som avvirkes, hogges før hogstmodenhetsalder. Av dette arealet utgjør hogstklasse IV 25 %, mens hogstklasse III eller yngre utgjør 4 %. Skog definert som ”yngre skog” etter forslag til revidert PEFC skogstandard utgjør 9 %. Generelt benyttes relativt skånsomme metoder for markberedning i Norge i dag, og disse er vurdert til sannsynligvis å ha liten eller ingen effekt på karbonmengder i jorda over tid og over det totale areal. Tettere planting gir høyere volumproduksjon tidlig i bestandets liv. I følge resultatkontrollen i 2013 hadde 29 % av det totale foryngelsesarealet et plantetall under anbefalt nivå i bærekraftforskriften. Framskrivningene av skogbestokningen viser at en fortsettelse av dagens praksis på årlig foryngelsesareal fra 2015 og frem til 2100 akkumulert gir 83,5 millioner tonn CO2 lavere opptak enn om arealet hadde vært plantet med anbefalt tetthet. Høyere plantetetthet gir også økt mulighet for å ta ut virke gjennom tynning. Vi mener det er potensial for økt tynningsaktivitet, uten at dette vil redusere produksjon (opptak) på lenger sikt. Tynning kan øke potensialet for mer bruk av GROT (heltretynning). Ved tynning og gjødsling kan andelen sagtømmer i det hogstmodne bestandet øke, og samtidig kan tynning være ønskelig for å lage stabile bestand som kan overholdes utover normal hogstmodenhetsalder. Uttak av hogstrester (GROT) gir råstoff til bioenergi, som kan brukes til å erstatte fossile brensler. Forutsatt høstet på en bærekraftig måte, kan uttaket av GROT sannsynligvis økes uten redusert fremtidig produksjon (opptak). En lavskjerm med bjørk over granforyngelse vil, dersom den skjøttes riktig, gi en høyere total volumproduksjon på arealet over ett omløp sammenlignet med et renbestand med gran.

To document

Abstract

In order to safeguard biodiversity in forest we need to know how forest policy instruments work. Here we use a nationwide network of 9400 plots in productive forest to analyze to what extent large-scale policy instruments, individually and together, target forest of high conservation value in Norway. We studied both instruments working through direct regulation; Strict Protection and Landscape Protection, and instruments working through management planning and voluntary schemes of forest certification; Wilderness Area and Mountain Forest. As forest of high conservation value (HCV-forest) we considered the extent of 12 Biodiversity Habitats and the extent of Old-Age Forest. We found that 22% of productive forestarea contained Biodiversity Habitats. More than 70% of this area was not covered by any large-scale instruments. Mountain Forest covered 23%, while Strict Protection and Wilderness both covered 5% of the Biodiversity Habitat area. A total of 9% of productive forest area contained Old-Age Forest, and the relative coverage of the four instruments was similar as for Biodiversity Habitats. For all instruments, except Landscape Protection, the targeted areas contained significantly higher proportions of HCV-forest than areas not targeted by these instruments. Areas targeted by Strict Protection had higher proportions of HCV-forest than areas targeted by other instruments, except for areas targeted by Wilderness Area which showed similar proportions of Biodiversity Habitats. There was a substantial amount of spatial overlap between the policy tools, but no incremental conservation effect of overlapping instruments in terms of contributing to higher percentages of targeted HCV-forest. Our results reveal that although the current policy mix has an above average representation of forest of high conservation value, the targeting efficiency in terms of area overlap is limited. There is a need to improve forest conservation and a potential to cover this need by better targeting high conservation value areas.

Abstract

This report has been prepared in the frame of Work Package 3 (Policy) of the Interreg IVB project Bioenergy Promotion. The main rationale of this work package is to support the development of coherent national and (sub)regional policies promoting the sustainable production and consumption of bioenergy. The purpose of the country policy assessment report is to describe the main promotional policies and support schemes for bioenergy and to assess to what extent national policy frameworks contribute to Sustainable Development and integrate related sustainability principles and criteria. At present and in the foreseeable future, the main source of raw materials for bioenergy in Norway is likely to be the forests. However, waste from agriculture, households and industry is another promising source. Investment support needs to be continued, at least at present levels. The main bottlenecks for increased use of bioenergy in Norway are economic, so economic support is necessary. Further development of the standard for sustainable forestry is required, in order to take into account aspects that are not yet covered (see above under Point 3.5). However, there is currently disagreement between the parties to the Living Forests standard, so revision is not likely to take place soon. Current research is being carried out, for example in CenBio and the project “Ecological consequences of increased biomass removal from forests in Norway” on the effects of whole-tree harvesting compared to stem-only harvesting on soil nutrients, carbon stocks, ground vegetation and regeneration). In addition, work is being carried out to study the applicability under Norwegian conditions of the guidelines of other countries such as Sweden, Finland, the UK and Ireland and to prepare preliminary guidelines for Norwegian forestry. There is disagreement on the likely short-term effects of biomass harvesting for bioenergy on carbon sequestration in forest ecosystems (see above under 5.2) and this needs to be further studied. In their present form, the binding EU sustainability criteria for biofuels/bioliquids should not be extended to solid/gaseous biomass used for electricity and heating/cooling. Some changes are necessary to take account of specific conditions e.g. in forestry. For example, it is stated in Point 4 of Article 17 of the Renewable Energy Directive that biofuels and bioliquids shall not be obtained from land that was continuously forested in January 2008 and is no longer continuously forested. It is unclear how this would affect clear-cuts. Also, in Point C7 of Annex V, the 20-year period for calculating carbon stock changes is completely unrealistic for forestry (although this refers to land-use change and it could be argued that felling is not land-use change if the land is used for forest afterwards; this should be clarified). These aspects of the Renewable Energy Directive are already problematic if forest biomass is to be used for biofuels or bioliquids.

Abstract

In this report, the oral and poster contributions of the scientific conference “Forest Management and Silviculture in the North – Balancing Future Needs” have been compiled. The conference was arranged 6-8 September 2011 in Stjørdal, Norway, gathering more than 50 delegates from seven countries. The conference was hosted by the Norwegian Forest and Landscape Institute and was initiated jointly by IUFRO WP 1.01.01 Boreal forest silviculture and management and the SNS network group Sustainable forest management in northern Fennoscandia (NORFOR).

Abstract

In this report, the oral and poster contributions of the scientific conference “Forest Management and Silviculture in the North – Balancing Future Needs” have been compiled. The conference was arranged 6-8 September 2011 in Stjørdal, Norway, gathering more than 50 delegates from seven countries. The conference was hosted by the Norwegian Forest and Landscape Institute and was initiated jointly by IUFRO WP 1.01.01 Boreal forest silviculture and management and the SNS network group Sustainable forest management in northern Fennoscandia (NORFOR).

To document

Abstract

Ambitious targets for renewable energy production in Norway draw attention to biomass potent-ials. The objective of this report is to review the state of the art regarding research on estimation methods, the availability and production of tree biomass resources for energy purposes in Norway in order to indentify knowledge gaps and thus facilitate appropriate focus, development and priorities regarding research for the coming years. The review focuses on biomass from pri-mary forest production with emphasis on Norwegian conditions, but also considers international research, especially from the other Nordic countries. Three main subject areas are considered: - biomass estimation - biomass resources and availability - biomass production. The first part of this report comprises an overview of existing biomass equations and associated inventory methods applied for estimating biomass in Norway. The overview includes a description of the Norwegian National Forest Inventory data as a basis for large-scale biomass assessments. The second part of the report comprises an overview of previous Norwegian assessments of biomass as an energy supplier as well as suggestions for improvements in such assessments. Improvement possibilities regarding the impacts of environmentally oriented restrictions, appropriate models for productivity and cost calculations regarding biomass harvesting systems, and implementation of biomass-related features in existing decisions support systems to facilitate analyses, where timber production and biomass production for energy purposes are equally important, are identified. The final part of the review focuses on silvi-cultural options aiming at optimizing the value of total biomass instead of the conventional approach to silviculture where the main focus is timber values.

Abstract

In trees adapted to cold climates, conditions during autumn and winter may influence the subsequent timing of bud burst and hence tree survival during early spring frosts. We tested the effects of two temperatures during, dormancy induction Mid mild spells (MS) during chilling, on the timing of bud burst in three Picea abies (L.) Karst. provenances (58-66 degrees N). One-year-old seedlings were induced to become dormant at temperatures of 12 or 21 degrees C applied during 9 weeks of short days (12-h photoperiod). The seedlings were then moved to cold storage and given either continuous chilling at 0.7 degrees C (control), or chilling interrupted by one 14-day MS it either 8 or 12 degrees C. Interruptions with MS were staggered throughout the 175-day chilling period, resulting in 10 MS differing in date of onset. Subsets of seedlings were moved to forcing conditions (12-h photoperiod, 12 degrees C) throughout the chilling period, to assess dormancy status different timings of the MS treatment. Finally, after 175 days of chilling, timing of bud burst was assessed in a 24-h photoperiod at 12 degrees C (control and MS-treated seedlings). The MS treatment did not significantly affect days to bud burst when given early (after 7-35 chilling days). When MS was given after 49 chilling days or later, the seedlings burst bud earlier than the controls, and the difference increased with increasing length of the chilling period given before the MS. The 12 degrees C MS treatment was more effective than the 8 degrees C MS treatment, and the difference remained constant after the seedlings had received 66 or more chilling days before the MS treatment was applied. In all provenances, a constant temperature of 21 degrees C during dormancy induction resulted in more dormant seedlings (delayed bud burst) than a constant temperature of 12 degrees C, but this did not delay the response to the MS treatment.

To document

Abstract

Detailed knowledge of temperature effects on the timing of dormancy development and bud burst will help evaluate the impacts of climate change on forest trees. We tested the effects of temperature applied during short-day treatment, duration of short-day treatment, duration of chilling and light regime applied during forcing on the timing of bud burst in 1- and 2-year-old seedlings of nine provenances of Norway spruce (Picea abies (L.) Karst.). High temperature during dormancy induction, little or no chilling and low temperature during forcing all delayed dormancy release but did not prevent bud burst or growth onset provided the seedlings were forced under long-day conditions. Without chilling, bud burst occurred in about 20% of seedlings kept in short days at 12 C, indicating that young Norway spruce seedlings do not exhibit true bud dormancy. Chilling hastened bud burst and removed the long photoperiod requirement, but the effect of high temperature applied during dormancy induction was observed even after prolonged chilling. Extension of the short-day treatment from 4 to 8 or 12 weeks hastened bud burst. The effect of treatments applied during dormancy development was larger than that of provenance; in some cases no provenance effect was detected, but in 1-year-old seedlings, time to bud burst decreased linearly with increasing latitude of origin. Differences among provenances were complicated by different responses of some origins to light conditions under long-day forcing. In conclusion, timing of bud burst in Norway spruce seedlings is significantly affected by temperature during bud set, and these effects are modified by chilling and environmental conditions during forcing.

Abstract

In winter 2000-2001, there was a serious outbreak of Gremmeniella abietina Morelet in southeastern Norway. During the outbreak, we noted that injured Scots pine trees (Pinus sylvestris L.) developed secondary buds in response to the fungus attack, and we decided to study the relationship between injury, appearance of secondary buds and recovery of the trees thereafter. For this purpose, 143 trees from 10 to 50 years of age were chosen and grouped into crown density classes. Injury was assessed in detail, and buds were counted before bud burst in the spring of 2002. In addition, a subset of 15 trees was followed through the summer of 2002 to assess recovery. All injured trees developed secondary buds, with a clear overweight of dormant winter buds in proportion to interfoliar buds. Healthy control trees did not develop secondary buds at all. The secondary buds appeared predominantly on the injured parts of the tree; interfoliar buds in particular developed just beneath the damaged tissue. Most of the secondary buds died during the winter of 2001-2002, mainly because the fungus continued to spread after the first outbreak. Many of the remaining buds developed shoots with abnormal growth during the summer. Secondary buds may help trees to recover from Gremmeniella attacks, but this strategy may fail when the fungus continues to grow and injure the newly formed buds and shoots.