To document

Abstract

Taper models, which describe the shape of tree stems, are central to estimating stem volume. Literature provides both taper- and volume models for the three main species in Norway, Norway spruce, Scots pine, and birch. These models, however, were mainly developed using approaches established over 50 years ago, and without consistency between taper and volume. We tested eleven equations for taper and six equations for bark thickness. The models were fitted and evaluated using a large dataset covering all forested regions in Norway. The selected models were converted into volume functions using numerical integration, providing both with- and without-bark volumes and compared to the volume functions in operational use. Taper models resulted in root mean squared error (RMSE) of 7.2, 7.9, and 9.0 mm for spruce, pine, and birch respectively. Bark thickness models resulted in RMSE of 2.5, 6.1, and 4.1 mm, for spruce, pine, and birch respectively. Validation of volume models with bark resulted in RMSE of 12.7%, 13.0%, and 19.7% for spruce, pine, and birch respectively. Additional variables, tree age, site index, elevation, and live crown proportion, were tested without resulting in any strong increase in predictive power.

Abstract

Background The Norwegian forest resource map (SR16) maps forest attributes by combining national forest inventory (NFI), airborne laser scanning (ALS) and other remotely sensed data. While the ALS data were acquired over a time interval of 10 years using various sensors and settings, the NFI data are continuously collected. Aims of this study were to analyze the effects of stratification on models linking remotely sensed and field data, and assess the accuracy overall and at the ALS project level. Materials and methods The model dataset consisted of 9203 NFI field plots and data from 367 ALS projects, covering 17 Mha and 2/3 of the productive forest in Norway. Mixed-effects regression models were used to account for differences among ALS projects. Two types of stratification were used to fit models: 1) stratification by the three main tree species groups spruce, pine and deciduous resulted in species-specific models that can utilize a satellite-based species map for improving predictions, and 2) stratification by species and maturity class resulted in stratum-specific models that can be used in forest management inventories where each stand regularly is visually stratified accordingly. Stratified models were compared to general models that were fit without stratifying the data. Results The species-specific models had relative root-mean-squared errors (RMSEs) of 35%, 34%, 31%, and 12% for volume, aboveground biomass, basal area, and Lorey’s height, respectively. These RMSEs were 2–7 percentage points (pp) smaller than those of general models. When validating using predicted species, RMSEs were 0–4 pp. smaller than those of general models. Models stratified by main species and maturity class further improved RMSEs compared to species-specific models by up to 1.8 pp. Using mixed-effects models over ordinary least squares models resulted in a decrease of RMSE for timber volume of 1.0–3.9 pp., depending on the main tree species. RMSEs for timber volume ranged between 19%–59% among individual ALS projects. Conclusions The stratification by tree species considerably improved models of forest structural variables. A further stratification by maturity class improved these models only moderately. The accuracy of the models utilized in SR16 were within the range reported from other ALS-based forest inventories, but local variations are apparent.

Abstract

Key message Large-scale forest resource maps based on national forest inventory (NFI) data and airborne laser scanning may facilitate synergies between NFIs and forest management inventories (FMIs). A comparison of models used in such a NFI-based map and a FMI indicate that NFI-based maps can directly be used in FMIs to estimate timber volume of mature spruce forests. Context Traditionally, FMIs and NFIs have been separate activities. The increasing availability of detailed NFI-based forest resource maps provides the possibility to eliminate or reduce the need of field sample plot measurements in FMIs if their accuracy is similar. Aims We aim to (1) compare a timber volume model used in a NFI-based map and models used in a FMI, and (2) evaluate utilizing additional local sample plots in the model of the NFI-based map. Methods Accuracies of timber volume estimates using models from an existing NFI-based map and a FMI were compared at plot and stand level. Results Estimates from the NFI-based map were similar to or more accurate than the FMI. The addition of local plots to the modeling data did not clearly improve the model of the NFI-based map. Conclusion The comparison indicates that NFI-based maps can directly be used in FMIs for timber volume estimation in mature spruce stands, leading to potentially large cost savings.

To document

Abstract

Boreal forests constitute a large portion of the global forest area, yet they are undersampled through field surveys, and only a few remotely sensed data sources provide structural information wall-to-wall throughout the boreal domain. ArcticDEM is a collection of high-resolution (2 m) space-borne stereogrammetric digital surface models (DSM) covering the entire land area north of 60° of latitude. The free-availability of ArcticDEM data offers new possibilities for aboveground biomass mapping (AGB) across boreal forests, and thus it is necessary to evaluate the potential for these data to map AGB over alternative open-data sources (i.e., Sentinel-2). This study was performed over the entire land area of Norway north of 60° of latitude, and the Norwegian national forest inventory (NFI) was used as a source of field data composed of accurately geolocated field plots (n=7710) systematically distributed across the study area. Separate random forest models were fitted using NFI data, and corresponding remotely sensed data consisting of either: i) a canopy height model (ArcticCHM) obtained by subtracting a high-quality digital terrain model (DTM) from the ArcticDEM DSM height values, ii) Sentinel-2 (S2), or iii) a combination of the two (ArcticCHM+S2). Furthermore, we assessed the effect of the forest- and terrain-specific factors on the models’ predictive accuracy. The best model (,i.e., ArcticCHM+S2) explained nearly 60% of the variance of the training set, which translated in the largest accuracy in terms of root mean square error (RMSE=41.4 t ha−1 ). This result highlights the synergy between 3D and multispectral data in AGB modelling. Furthermore, this study showed that despite the importance of ArcticCHM variables, the S2 model performed slightly better than ArcticCHM model. This finding highlights some of the limitations of ArcticDEM, which, despite the unprecedented spatial resolution, is highly heterogeneous due to the blending of multiple acquisitions across different years and seasons. We found that both forest- and terrain-specific characteristics affected the uncertainty of the ArcticCHM+S2 model and concluded that the combined use of ArcticCHM and Sentinel-2 represents a viable solution for AGB mapping across boreal forests. The synergy between the two data sources allowed for a reduction of the saturation effects typical of multispectral data while ensuring the spatial consistency in the output predictions due to the removal of artifacts and data voids present in ArcticCHM data. While the main contribution of this study is to provide the first evidence of the best-case-scenario (i.e., availability of accurate terrain models) that ArcticDEM data can provide for large-scale AGB modelling, it remains critically important for other studies to investigate how ArcticDEM may be used in areas where no DTMs are available as is the case for large portions of the boreal zone.

Abstract

Nation-wide Sentinel-2 mosaics were used with National Forest Inventory (NFI) plot data for modelling and subsequent mapping of spruce-, pine-, and deciduous-dominated forest in Norway at a 16 m × 16 m resolution. The accuracies of the best model ranged between 74% for spruce and 87% for deciduous forest. An overall accuracy of 90% was found on stand level using independent data from more than 42 000 stands. Errors mostly resulting from a forest mask reduced the model accuracies by ∼10%. The produced map was subsequently used to generate model-assisted (MA) and poststratified (PS) estimates of species-specific forest area. At the national level, efficiencies of the estimates increased by 20% to 50% for MA and up to 90% for PS. Greater minimum numbers of observations constrained the use of PS. For MA estimates of municipalities, efficiencies improved by up to a factor of 8 but were sometimes also less than 1. PS estimates were always equally as or more precise than direct and MA estimates but were applicable in fewer municipalities. The tree species prediction map is part of the Norwegian forest resource map and is used, among others, to improve maps of other variables of interest such as timber volume and biomass.

Abstract

This paper describes the development and utility of the Norwegian forest resources map (SR16). SR16 is developed using photogrammetric point cloud data with ground plots from the Norwegian National Forest Inventory (NFI). First, an existing forest mask was updated with object-based image analysis methods. Evaluation against the NFI forest definitions showed Cohen's kappa of 0.80 and accuracy of 0.91 in the lowlands and a kappa of 0.73 and an accuracy of 0.96 in the mountains. Within the updated forest mask, a 16×16 m raster map was developed with Lorey's height, volume, biomass, and tree species as attributes (SR16-raster). All attributes were predicted with generalized linear models that explained about 70% of the observed variation and had relative RMSEs of about 50%. SR16-raster was segmented into stand-like polygons that are relatively homogenous in respect to tree species, volume, site index, and Lorey's height (SR16-vector). When SR16 was utilized in a combination with the NFI plots and a model-assisted estimator, the precision was on average 2–3 times higher than estimates based on field data only. In conclusion, SR16 is useful for improved estimates from the Norwegian NFI at various scales. The mapped products may be useful as additional information in Forest Management Inventories.

Abstract

The effectiveness of generating virtual transects on unmanned aerial vehicle-derived orthomosaics was evaluated in estimating the extent of soil disturbance by severity class. Combinations of 4 transect lengths (5–50 m) and five sampling intensities (1–20 transects per ha) were used in assessing traffic intensity and the severity of soil disturbance on six post-harvest, cut-to-length (CTL) clearfell sites. In total, 15% of the 33 ha studied showed some trace of vehicle traffic. Of this, 63% of was categorized as light (no visible surface disturbance). Traffic intensity varied from 787 to 1256 m ha−1, with a weighted mean of 956 m ha−1, approximately twice the geometrical minimum achievable with CTL technology under perfect conditions. An overall weighted mean of 4.7% of the total site area was compromised by severe rutting. A high sampling intensity, increasing with decreasing incidence of soil disturbance, is required if mean estimation error is to be kept below 20%. The paper presents a methodology that can be generally applied in forest management or in similar land-use evaluations.

Abstract

In many applications, estimates are required for small sub-populations with so few (or no) sample plots that direct estimators that do not utilize auxiliary variables (e.g. remotely sensed data) are not applicable or result in low precision. This problem is overcome in small area estimation (SAE) by linking the variable of interest to auxiliary variables using a model. Two types of models can be distinguished based on the scale on which they operate: i) Unit-level models are applied in the well-known area-based approach (ABA) and are commonly used in forest inventories supported by fine-resolution 3D remote sensing data such as airborne laser scanning (ALS) or digital aerial photogrammetry (AP); ii) Area-level models, where the response is a direct estimate based on a sample within the domain and the explanatory variables are aggregated auxiliary variables, are less frequently applied. Estimators associated with these two model types can make use of sample plots within domains if available and reduce to so-called synthetic estimators in domains where no sample plots are available. We used both model types and their associated model-based estimators in the same study area with AP data as auxiliary variables. Heteroscedasticity, i.e. for continuous dependent variables typically an increasing dispersion of re- siduals with increasing predictions, is often observed in models linking field- and remotely sensed data. This violates the model assumption that the distribution of the residual errors is constant. Complying with model assumptions is required for model-based methods to result in reliable estimates. Addressing heteroscedasticity in models had considerable impacts on standard errors. When complying with model assumptions, the precision of estimates based on unit-level models was, on average, considerably greater (29%–31% smaller standard errors) than those based on area-level models. Area-level models may nonetheless be attractive because they allow the use of sampling designs that do not easily link to remotely sensed data, such as variable radius plots.

Abstract

The use of digital aerial photogrammetry (DAP) for forest inventory purposes has been widely studied and can produce comparable accuracy compared with airborne laser scanning (ALS) in small, homogeneous areas. However, the accuracy of DAP for large scale applications with heterogeneous terrain and forest vegetation has not yet been reported. In this study we examined the accuracy of timber volume, biomass and basal area prediction models based on DAP and national forest inventory (NFI) data on a large area in central Norway. Two separate point clouds were derived from aerial image acquisitions of 2010 and 2013. Vegetation heights were extracted by subtracting terrain elevation derived from ALS. A large number of NFI sample plots (483) measured between 2010 and 2014 were used as reference data to fit linear models for timber volume, biomass and basal area with height metrics derived from the DAP data as explanatory variables. Variables describing the heterogeneous environmental and image acquisition conditions were calculated and their influence on the model accuracy was tested. The results showed that forest parameter prediction using DAP works well when applied to a large area. The model fits of the timber volume, biomass and basal area models were good with R2 of 0.80, 0.81, 0.81 and RMSEs of 41.43 m3 ha−1 (55% of the mean observed value), 32.49 t ha−1 (47%), 5.19 m2 ha−1 (41%), respectively. Only a small proportion of the variation could be attributed to the heterogeneous conditions. The inclusion of the relative sun inclination led to an improvement of the model RMSEs by 2% of the mean observed values. The relatively low cost and stability across large areas make DAP an attractive source of auxiliary information for large scale forest inventories.