Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 7.9.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Sammendrag

Sclerotinia stem rot (SSR) is the most important disease of oilseed Brassica crops in Norway. Fungicide applications should be aligned with the actual need for control, but the SSR prediction models used lack accuracy. We have studied the importance of precipitation, and the role of petal and leaf infection for SSR incidence by using data from Norwegian field and trap plant trials over several years. In the trials, SSR incidence ranged from 0 to 65%. Given an infection threshold of 25% SSR, regression and Receiver Operating Characteristics (ROC) analysis were used to evaluate different precipitation thresholds. The sum of precipitation two weeks before and during flowering appeared to be a poor predictor for SSR infection in our field and trap plant trials (P = 0.24, P = 0.11, respectively). Leaves from three levels (leaf one, three, five), and petals were collected at three to four different times during flowering from nine field sites over two years and tested for SSR infection with real-time PCR. Percentage total leaf and petal infection explained 57 and 45% of variation in SSR incidence, respectively. Examining the different leaves and petals separately, infection of leaf three sampled at full flowering showed the highest explanation of variation in later SSR incidence (R2 = 65%, P < 0.001). ROC analysis showed that given an infection threshold of 45%, both petal and leaf infection recommended spraying when spraying was actually needed. Combining information on petal and leaf infection during flowering with relevant microclimate factors in the canopy, instead of the sum of precipitation might improve prediction accuracy for SSR.

Til dokument

Sammendrag

We investigated the ability of the fungal entomopathogen Beauveria bassiana strain GHA to endophytically colonize sugarcane (Saccharum officinarum) and its impact on plant growth. We used foliar spray, stem injection, and soil drench inoculation methods. All three inoculation methods resulted in B. bassiana colonizing sugarcane tissues. Extent of fungal colonization differed significantly with inoculation method (χ2 = 20.112, d. f. = 2, p < 0.001), and stem injection showed the highest colonization level followed by foliar spray and root drench. Extent of fungal colonization differed significantly with plant part (χ2 = 33.072, d. f. = 5, p < 0.001); stem injection resulted in B. bassiana colonization of the stem and to some extent leaves; foliar spray resulted in colonization of leaves and to some extent, the stem; and soil drench resulted in colonization of roots and to some extent the stem. Irrespective of inoculation method, B. bassiana colonization was 2.8 times lower at 14–16 d post inoculation (DPI) than at 7–10 DPI (p = 0.020). Spraying leaves and drenching the soil with B. bassiana significantly (p = 0.01) enhanced numbers of sett roots. This study demonstrates for the first time that B. bassiana can endophytically colonize sugarcane plants and enhance the root sett and it provides a starting point for exploring the use of this fungus as an endophyte in management of sugarcane pests.

Til dokument

Sammendrag

The Svalbard Global Seed Vault was opened in 2008. The aim was to secure genetic diversity of crop plants important to future food production. The Seed Vault has the capacity to store 4.5 million seed samples, each containing on average 500 seeds sealed in airtight aluminum bags. By the end of 2016, the Vault had approximately 880,000 accessions representing more than 5000 plant species. The samples, originating from 71 gene banks and research institutes from all across the world, include major food crops such as wheat, rice, barley, sorghum, maize, legumes and forage crops, and vegetables. The seed samples are duplicates (backups) of seed stored in national, regional and international gene banks. Deposits can only be made by following a depositor agreement and the seed samples in the Vault remain the property of the depositing gene bank. The Vault is situated in permafrost at -3 to -4°C, but artificial cooling maintains a temperature of -18°C inside the Vault. Management of the Vault is secured through an agreement between the Norwegian Ministry of Agriculture and Food, the Crop Trust and the Nordic Genetic Resource Centre (NordGen). Secure storage of gene bank seeds in Svalbard was initiated during the 1980s, when the Nordic Gene Bank placed a collection of seed duplicates in an abandoned coal mine outside Longyearbyen in Svalbard. In addition to the secure storage of the base collection, a study of the longevity (germination and seed health) in long-term storage (100 years) in permafrost was started in 1986. A total of 42 seed samples of 16 common agricultural and horticultural Nordic species were included in the study. A set of sub-samples has been taken out for analyses every two and a half years during the first 20 years, and are taken out every five years for the next 80 years.

Til dokument

Sammendrag

The estimated potential yield losses caused by plant pathogens is up to 16% globally (Oerke 2006) and most research in plant pathology aims to reduce yield loss in our crops directly or indirectly. Yield losses caused by a certain disease depend not only on disease severity, but also on the weather factors, the pathogen’s aggressiveness, and the ability of the crop to compensate for reduced photosynthetic area. The yield loss-disease relationship in a certain host-pathogen system might therefore change from year to year, making predictions for yield loss very difficult at the regional or even at the farmer’s level. However, estimating yield losses is essential to determine disease management thresholds at which acute control measures such as fungicide applications, or strategic measures such as crop rotation or use of resistant cultivars are economically and environmentally sensible. Legislation in many countries enforces implementation of integrated pest management (IPM), based on economic thresholds at which the costs due to a disease justify the costs for its management. Without a better understanding of the relationship between disease epidemiology and yield loss, we remain insufficiently equipped to design adequate IPM strategies that will be widely adapted in agriculture. Crop loss studies are resource demanding and difficult to interpret for one particular disease, as crops are usually not invaded by only one pest or pathogen at a time. Combining our knowledge on disease epidemiology, crop physiology, yield development, damage mechanisms involved, and the effect of management practices can help us to increase our understanding of the disease-crop loss relationship. The main aim of this paper is to review and analyze the literature on a representative host-pathogen relationship in an important staple food crop to identify knowledge gaps and research areas to better assess yield loss and design management strategies based on economic thresholds. Wheat is one of the most important staple foods worldwide and is susceptible to several important plant diseases. In our article, we focus on Septoria nodorum blotch (SNB) or Glume blotch of wheat as an example for a stubble-borne, seed-transmitted disease with a worldwide distribution causing considerable and regular yield losses. In their review on yield losses due to wheat pathogens in Australia, Murray and Brennan (2009) estimated the current annual economic loss due to SNB as high as $108 × 106, with potential costs as high as $230 × 106. The causal fungus, Parastagonospora nodorum, is currently serving as a model organism for molecular studies of the intimate relationship between necrotic effector-producing fungal strains and their corresponding susceptibility genes present in wheat cultivars (Oliver et al. 2012). In this paper, we analyze the literature on the biology of this common wheat pathogen, the yield loss it reportedly has caused, and the effect of control strategies to reduce this loss. Based on this analysis, we will evaluate the use of common management practices to reduce disease-related yield loss and identify related research needs.