Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Til dokument

Sammendrag

As primary producers, plants are under constant pressure to defend themselves against potentially deadly pathogens and herbivores. In this review, we describe short- and long-term strategies that enable plants to cope with these stresses. Apart from internal immunological strategies that involve physiological and (epi)genetic modifications at the cellular level, plants also employ external strategies that rely on recruitment of beneficial organisms. We discuss these strategies along a gradient of increasing timescales, ranging from rapid immune responses that are initiated within seconds to (epi)genetic adaptations that occur over multiple plant generations. We cover the latest insights into the mechanistic and evolutionary underpinnings of these strategies and present explanatory models. Finally, we discuss how knowledge from short-lived model species can be translated to economically and ecologically important perennials to exploit adaptive plant strategies and mitigate future impacts of pests and diseases in an increasingly interconnected and changing world.

Til dokument

Sammendrag

Legume-based cropping system and Brachiaria forage system could play a significant role in enhancing food and nutrition security and sustainable intensifications of African agriculture. To reveal this potential, a comprehensive review of literatures and assessment was performed using key indicators in relation to food and nutrition quality, agro-ecological services and socioeconomic benefits. The key indicators for legumes intercropping systems include: Grain yield, soil organic matter, food availability, nutritive values of legumes, maize and millets- based foods, proportion of income from crop sale and percentage of farmers aware and/or adopting intercropping. In the case of Brachiaria system, the forage biomass, milk yield, availability of milk, milk nutrition contents, income from Brachiaria grass and milk sale and people practising the Brachiaria technology were considered key indicators. Both systems showed positive impacts and contribute to a range of the United Nation’s sustainable development goals including 1, 2, 3, 12, 13 and 15 and other associated targets. Integrating legume-based cropping systems and Brachiaria forage system will enhance contributions of smallholder farmers to food and nutrition security. The necessary changes needed in technology, institutions and policies to upscale legume-based cropping systems and Brachiaria forage system were suggested. These changes include improved varieties, quality seeds, improved cultivation practices, market provision, effective extension and advisory services and support to the seed productions and distribution systems, among others. Yet, to fully tap the potentials of legume-based and Brachiaria forage systems sustainably and raise the profile of these climate smart systems, context specific research measures are necessary.

Til dokument

Sammendrag

Sweet cherry production worldwide is grown in the open land. Production technique is more or less similar with scions grafted on dwarfing and semi-dwarfing rootstock and trees arranged in single rows. Sweet cherries can be grown in Norway in areas with suitable local climatic conditions up to 60°N. All orchards have high-density planting systems and are rain covered. Rain-induced fruit cracking in cherries remains a problem at an international level. The most common systems in Norway are multibay high tunnel systems and retractable rain covers. Covered orchard tunnel systems offer not only the advantage of rain exclusion but also allow additional manipulation of the environment, tree growth and fruiting. In general, sweet cherry high tunnel production gives increased yields of larger fruit than in the open land, but investment costs are higher. One more advanced way of producing sweet cherries is to grow the trees in small pots in greenhouses. A greenhouse gives opportunity to control the temperature regime and in that way program the maturity of the fruits. Research is conducted to test different cultivars, rootstocks, training methods in high-density production systems (1 tree m-2) with different fertigation levels. Preliminary results show that the yield potential is much higher than in the open land with larger fruits. Challenges are to optimize the water and nutrition supply and adjust the temperatures to obtain large yields of high quality fruits during different periods of the season.