Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2007
Forfattere
Bjørn Molteberg Trygve S. Aamlid Gudni Thorvaldsson Anders Hammarlund Frank Enger Tatsiana Espevig Åge Susort Daniel NordSammendrag
En testing av sorter til bruk på skandinavisk golfgreener startet opp som et nytt prosjekt i 2007. Fire forsøk ble etablert på USGA greeener ved Östra Ljungby Naturgymnasium, Sverige, Bioforsk Landvik and Bioforsk Apelsvoll, Norge og ved en golfbane i Keldnaholt, Island. Totalt 42 sorter innen rødsvingel, engkvein, hundekvein og krypkvein, flerårig raigras og markrapp er med i prosjektet. Sådato for Apelsvoll, Landvik, Keldnaholt og Östra Ljungby var henholdsvis 26. juni, 11, juli, 17. august og 6. september. Feltene har i såingsåret blitt klippet ned til 6 mm i rødsvingel, raigras og rapp og 4 mm i kvein. Mange sorter, spesielt innen raigras og markrapp, men også av kvein og rødsvingel viser lovende resultater. Greenåra 2008, 2009 og 2010 vil fortelle mer om disse sortene.
Forfattere
Svein Solberg Lars Eklundh Arnt Kristian Gjertsen Tomas Johansson Steve Joyce Holger Lange Erik Næsset Håkan Olsson Yong Pang Anne SolbergSammendrag
The REMFOR project evaluates remote sensing data and methods for monitoring forest health using variation in leaf area index (LAI) as a primary measure of defoliation. A large-scale pine sawfly outbreak in Norway serves as a test case. An LAI map of the study area was derived from airborne LIDAR measurements before and after the insect attack to serve as ground truth for satellite image analysis. The method predicts LAI from laser penetration rates through the canopy layer in accordance with the Beer- Lambert law calibrated with point measurements of LAI with LICOR LAI-2000. Comparing two cloud-free SPOT scenes from September 2004 and September 2005 shows obvious visual patterns of defoliation in pine forests from the 2005 outbreak. Preliminary analysis shows that the insect defoliation caused an increase in middle-infrared (SPOT band4) reflectance and a decrease in SPOT NDVI, and both these responses may be used as a reasonable predictor of LAI loss as derived from laser scanning. MODIS NDVI data were gathered for the area over the period 2000-2006, and the Timesat algorithm is used to smooth the seasonal variation. The insect attack is evident from the smoothed NDVI data both as a reduction in the summer mean value, and as an alteration of the seasonal profile during the larvae feeding period in June and July. REMFOR also encompasses a range of other remote sensing data types, including GLAS LIDAR, SAR and hyperspectral data from both airborne and satellite platforms (e.g. Hyspex and Hyperion). Landsat TM is used to generate a tree species map.
Sammendrag
Simple risk assessment tools for agricultural phosphorus (P) losses, like the P index, have been developed in the U.S.A. and in some European countries. Despite its popularity, there have been surprisingly few studies, which try to test the index close to the field scale. For Norway, the P index approach comprises the risk related to both the source of P (soil P status, amount of fertilizer and manure as well as method of application, plant P release by freezing and P balance) and the risk related to transport of P (erosion, flooding, surface runoff, contributing distance, modified connectivity, soil profile, subsurface drainage). In this paper, we have applied the Norwegian P index to farmer fields within a small agricultural catchment, the Skuterud catchment (450 ha), in southeastern Norway. The Norwegian P index was tested for two agricultural fields (0.3 to 0.4 ha) and nine subcatchments (6 to 65 ha). Total P concentrations in runoff from the eleven study areas were measured during the year from May 2001 to April 2002. Results from the testing showed that the Norwegian P index described 66% of the variation in measured relative total P concentration for fields and subcatchments included in this study. Additionally, the P index was able to detect fields and subcatchments with the highest measured P concentrations. Results also showed that the source factor contributed most to the variation between fields and hence were important for the identification of high-risk areas in Skuterud catchment. It was found that the soil P status described 66% of the variation in the source factor. Among the transport variables, it was found that both erosion risk and contributing distance had an important influence on the transport factor. Overall, the study illustrated the potential of the P index to detect areas with the highest risk of P loss.
Sammendrag
Neozygites floridana is a fungus in the order Entomophthorales that infects and kills the two-spotted spider mite, Tetranychus urticae. The fungus is therefore of interest for the biological control of T. urticae. To obtain information that might help in the use of this fungus under practical conditions in strawberries and cucumbers we have tried to answer the following questions in a series of studies*): 1) When, and at what infection levels does N. floridana occurre in T. urticae populations in fieldgrown strawberries? 2) How and where does N. floridana survive harsh climatic conditions (i.e winter) in Norway? 3) How and where does N. floridana infected T. urticae move and sporulate on a plant? 4) How do commonly used pesticides in strawberries affect N. floridana and T. urticae? 5) How can N. floridana be inoculated in augmentative microbial control of T. urticae? Results show that N. floridana infected and killed T. urticae in 12 out of 12 Norwegian strawberry fields studied. Infection levels up to 90% were observed, and the highest levels were observed late in the season. The infection levels throughout a season varied considerably. N. floridana was observed to overwinter as both hyphal bodies in hibernating T. urticae females from October to at least February at temperatures as low as -20o C. Cadavers with resting spores were found from October to the end of January. Cadavers then probably disintegrated, and resting spores were left on leaves, soil, etc. In a bioassay where a Norwegian N. floridana isolate was tested for numbers and distance of spores thrown at three different temperatures (13o, 18o, 23o C), preliminary results show that high numbers of spores (ca 1300-1900 per cadaver) were thrown at all three temperatures. Further, spores were thrown about the same distance (up to about 6 mm) at all three temperatures. The effects of pesticides used in strawberries on the N. floridana infection level were studied to evaluate factors that might be important for conservation biological control. The pesticides tested were three fungicides; Euparen (tolylfluanid), Teldor (fenhexamid), Switch (cyprodinil +fludioxonil) and one acaricide/ insecticide: Mesurol (methiocarb). The experiment indicated that all three fungicides affect N. floridana negatively but that Euparen might be the least harmful. Mesurol did not affect N. floridana. Our attempts to inoculate N. floridana artificially in a strawberry field has not yet been successful, but we now work on promising methods for inoculation of N. floridana in T. urticae populations in greenhouse cucumbers. More detailed results from the studies referred to in this abstract will soon be published elsewhere.
Sammendrag
Neozygites floridana is a fungus in the order Entomophthorales that infects and kills the two-spotted spider mite, Tetranychus urticae. The fungus is therefore of interest for the biological control of T. urticae. To obtain information that might help in the use of this fungus under practical conditions in strawberries and cucumbers we have tried to answer the following questions in a series of studies*): 1) When, and at what infection levels does N. floridana occurre in T. urticae populations in fieldgrown strawberries? 2) How and where does N. floridana survive harsh climatic conditions (i.e winter) in Norway? 3) How and where does N. floridana infected T. urticae move and sporulate on a plant? 4) How do commonly used pesticides in strawberries affect N. floridana and T. urticae? 5) How can N. floridana be inoculated in augmentative microbial control of T. urticae? Results show that N. floridana infected and killed T. urticae in 12 out of 12 Norwegian strawberry fields studied. Infection levels up to 90% were observed, and the highest levels were observed late in the season. The infection levels throughout a season varied considerably. N. floridana was observed to overwinter as both hyphal bodies in hibernating T. urticae females from October to at least February at temperatures as low as -20o C. Cadavers with resting spores were found from October to the end of January. Cadavers then probably disintegrated, and resting spores were left on leaves, soil, etc. In a bioassay where a Norwegian N. floridana isolate was tested for numbers and distance of spores thrown at three different temperatures (13o, 18o, 23o C), preliminary results show that high numbers of spores (ca 1300-1900 per cadaver) were thrown at all three temperatures. Further, spores were thrown about the same distance (up to about 6 mm) at all three temperatures. The effects of pesticides used in strawberries on the N. floridana infection level were studied to evaluate factors that might be important for conservation biological control. The pesticides tested were three fungicides; Euparen (tolylfluanid), Teldor (fenhexamid), Switch (cyprodinil +fludioxonil) and one acaricide/ insecticide: Mesurol (methiocarb). The experiment indicated that all three fungicides affect N. floridana negatively but that Euparen might be the least harmful. Mesurol did not affect N. floridana. Our attempts to inoculate N. floridana artificially in a strawberry field has not yet been successful, but we now work on promising methods for inoculation of N. floridana in T. urticae populations in greenhouse cucumbers. More detailed results from the studies referred to in this abstract will soon be published elsewhere.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Line Rosef Anne Langerud Ann NorderhaugSammendrag
The response of Deschampsia cespitosa in four different grazing regimes (continuously and rotationally grazed by sheep and continuously and rotationally grazed by cattle) was investigated in two regions Norway. Grazing both by cattle and sheep reduces, to a certain extent, the cover of D. cespitosa, while trampling seems to benefit D. cespitosa, both in terms of distribution and cover, probably due to improved conditions for germination. These two effects are important to consider when restoring abandoned grasslands with D. cespitosa as a dominating species. If the target is to control the species, successful management will depend on an adequate grazing pressure on D. cespitosa at the start of the restoration. At the same time it is important to avoid exposed ground due to damage by trampling.
Forfattere
Leif Jarle AsheimSammendrag
Det er ikke registrert sammendrag
Sammendrag
Model simulations show that an increased frequency in storms and drought periods may result in more frequent and shorter outbreaks of bark beetles. Warmer summers can result in two bark beetle generations per summer instead of one, giving bark beetles the opportunity to attack forests twice in a single year.
Sammendrag
Combinations of covering and fungicide applications were tested on two sweet cherry cultivars; Van during two years (2001 and 2002) and Lapins three years (2001"2003). The following treatments were tested in 2001 and 2002: (i) covering during flowering and from 5 to 6 weeks prior to harvest and throughout harvest, no fungicides applied, (ii) as (i) but fungicides were applied once or twice between the two covering periods, (iii) covered 5 to 6 weeks prior to harvest and throughout harvest, fungicides applied two or three times prior to covering, and (iv) uncovered throughout the season, fungicides applied two or three times in the period from flowering towards harvest. In 2003, the trees were covered only from 5 to 6 weeks prior to harvest and throughout harvest. Both treatments that year received fungicide applications during flowering, but one of the treatments was left unsprayed during the green fruit period prior to covering. Every combination of covering and fungicide applications reduced total fruit decay at harvest significantly compared to a full fungicide programme and no covering. In three of four trials when the trees were covered during flowering and prior to harvest, and fungicide applications were omitted in the green fruit phase between the covering periods, no significant increase in fruit rot occurred compared to treatments where fungicides were applied. However, in one trial there was a significant increase in fruit rot by leaving out one fungicide spray during that intermittent period. Furthermore, if fungicides were only applied during flowering and not on green fruit before covering in 2003, a significant increase in fruit rot occurred. Thus, leaving out fungicide applications during that supposedly less susceptible green fruit period, increased the risk of acquiring fruit rot. Applying fungicides during the green fruit stage significantly reduced the amount of brown rot in four of five trials and anthracnose in one of five trials. No negative effect on fruit quality was found from the extended covering periods. It can be concluded that covering effectively replaced fungicide applications during flowering and prior to harvest.