Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2016

Til dokument

Sammendrag

Denmark is one of the EU countries with a highly recognised agricultural sector, a high level of animal health and one of the lowest medication usages. In this article we aim to provide an overview of both private and public animal health incentives nested in the cattle and pig production industry that influence the decisions and behaviours of farmers in prevention of livestock disease epidemics. Not only do individual Danish pig and cattle farmers aim at highly efficient animal production, they are also involved in collective marketing and contracting which can enhance social capital, peer pressure and instill a greater sense of ownership of disease control prevention. Public incentives including rules on how animals should be transported within Denmark, SPF certification requirements and rules on farm biosecurity further improve farmer incentives to prevent animal diseases. However, Danish pig and cattle farmers’ incentives could be further improved by specifying consequences for not following requirements such as failure to make a compulsory biosecurity plan. The relatively high compensation in case of a disease outbreak provides a safety net for farmers, encourages them to quickly report suspected notifiable diseases but it could also reduce incentives for disease prevention due to the relatively high amounts of compensation.

Til dokument

Sammendrag

Process-based models (PBM) for simulation of weather dependent grass growth can assist farmers andplant breeders in addressing the challenges of climate change by simulating alternative roads of adap-tation. They can also provide management decision support under current conditions. A drawback ofexisting grass models is that they do not take into account the effect of winter stresses, limiting theiruse for full-year simulations in areas where winter survival is a key factor for yield security. Here, wepresent a novel full-year PBM for grassland named BASGRA. It was developed by combining the LIN-GRA grassland model (Van Oijen et al., 2005a) with models for cold hardening and soil physical winterprocesses. We present the model and show how it was parameterized for timothy (Phleum pratense L.),the most important forage grass in Scandinavia and parts of North America and Asia. Uniquely, BASGRAsimulates the processes taking place in the sward during the transition from summer to winter, includ-ing growth cessation and gradual cold hardening, and functions for simulating plant injury due to lowtemperatures, snow and ice affecting regrowth in spring. For the calibration, we used detailed data fromfive different locations in Norway, covering a wide range of agroclimatic regions, day lengths (latitudesfrom 59◦to 70◦N) and soil conditions. The total dataset included 11 variables, notably above-ground drymatter, leaf area index, tiller density, content of C reserves, and frost tolerance. All data were used inthe calibration. When BASGRA was run with the maximum a-posteriori (MAP) parameter vector fromthe single, Bayesian calibration, nearly all measured variables were simulated to an overall normalizedroot mean squared error (NRMSE) < 0.5. For many site × experiment combinations, NRMSE was <0.3. Thetemporal dynamics were captured well for most variables, as evaluated by comparing simulated timecourses versus data for the individual sites. The results may suggest that BASGRA is a reasonably robustmodel, allowing for simulation of growth and several important underlying processes with acceptableaccuracy for a range of agroclimatic conditions. However, the robustness of the model needs to be testedfurther using independent data from a wide range of growing conditions. Finally we show an exampleof application of the model, comparing overwintering risks in two climatically different sites, and dis-cuss future model applications. Further development work should include improved simulation of thedynamics of C reserves, and validation of winter tiller dynamics against independent data.