Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2017

Til dokument

Sammendrag

Background and aims Decomposition of the finest harvest residues is important for the carbon and nutrient cycle in forest ecosystems both before and after tree felling. We assumed that decomposition is dependent on harvest residue fraction and chemistry, soil temperature and moisture, and aimed at determining decomposition rates and nutrient dynamics of needles, twigs and fine roots from newly felled Picea abies trees in two sites with different climate and topography. Methods Decomposition of needles, twigs and fine roots in mesh bags was followed for up to six years and four years in harvesting sites in eastern and western Norway, respectively. The western site had a more humid climate and a steeper terrain than the eastern site. Results The mass loss after two years was significantly higher for needles (49–59%) than for twigs and fine roots (29–38%). Between sites, there was no significant difference between mass loss for neither needles nor twigs. Nitrogen accumulated in needles during the first year, but 35% of initial needle N had been released after three years. The initial needle and twig decomposition rate was dependent on soil moisture and topographic aspect. During the first three years, needle lignin concentrations retarded whereas P concentrations stimulated needle mass loss. For twigs, P concentrations stimulated mass loss, whereas higher soil temperatures reduced it. Conclusions Lignin and P concentrations of plant parts and soil temperature were the most important factors for the first three-year mass loss. The slow release of nutrients shows the importance of remaining needles, twigs and fine roots as a long-time nutrient source in the ecosystems under study.

Til dokument

Sammendrag

The impact of Delphinella shoot blight (Delphinella abietis) and Grovesiella canker (Grovesiella abieticola) on subalpine (Abies lasiocarpa) and corkbark fir (A. lasiocarpa var. arizonica) in a provenance trial in Idaho (ID) was evaluated in 2013. Both pathogens were previously reported from North America on fir species. D. abietis had been found on subalpine fir in USA, but not in ID, and G. abieticola on grand fir (Abies grandis) in ID, but not on subalpine or corkbark fir. D. abietis kills current-year needles and in severe cases buds and shoots, and G. abieticola results in dead shoots and branches and can eventually kill whole trees. Significant differences between provenances in susceptibility to D. abietis and G. abieticola were observed in the provenance trial in ID. In general, subalpine fir was more susceptible to both diseases than corkbark fir. In 2013, D. abietis was also found on subalpine fir in the Puget Sound area of Washington State and G. abieticola was seen on white fir (Abies concolor), but neither disease was detected in native stands of subalpine fir in Washington State. Morphological features of both fungi were described from samples collected in the provenance trial in ID in May 2016.