Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Sammendrag

Scots pine exhibits variations in ray anatomy, which are poorly understood. Some ray parenchyma cells develop thick and lignified cell walls before heartwood formation. We hypothesized that some stands and trees show high numbers of lignified and thick-walled parenchyma cells early in the sapwood. Therefore, a microscopic analysis of Scots pine sapwood from four different stands in Northern Europe was performed on Safranin — Astra blue-stained tangential micro sections from outer and inner sapwood areas. Significant differences in lignification and cell wall thickening of ray parenchyma cells were observed in the outer sapwood between all of the stands for the trees analyzed. On a single tree level, the relative lignification and cell wall thickening of ray parenchyma cells ranged from 4.3% to 74.3% in the outer sapwood. In the inner sapwood, lignification and cell wall thickening of ray parenchyma cells were more frequent. In some trees, however, the difference in lignification and cell wall thickening between inner and outer sapwood was small since early lignification, and cell wall thickening was already more common in the outer sapwood. Ray composition and number of rays per area were not significantly different within the studied material. However, only one Scottish tree had a significantly higher number of ray parenchyma cells per ray. The differences discovered in lignification and cell wall thickening in ray parenchyma cells early in the sapwood of Scots pine are relevant for wood utilization in general and impregnation treatments with protection agents in particular.

Til dokument

Sammendrag

To evaluate the performance of new wood-based products, reference wood species with known performances are included in laboratory and field trials. However, different wood species vary in their durability performance, and there will also be a within-species variation. The primary aim of this paper was to compare the material resistance against decay fungi and moisture performance of three European reference wood species, i.e., Scots pine sapwood (Pinus sylvestris), Norway spruce (Picea abies), and European beech (Fagus sylvatica). Wood material was collected from 43 locations all over Europe and exposed to brown rot (Rhodonia placenta), white rot (Trametes versicolor) or soft rot fungi. In addition, five different moisture performance characteristics were analyzed. The main results were the two factors accounting for the wetting ability (kwa) and the inherent protective properties of wood (kinh), factors for conversion between Norway spruce vs. Scots pine sapwood or European beech for the three decay types and four moisture tests, and material resistance dose (DRd) per wood species. The data illustrate that the differences between the three European reference wood species were minor, both with regard to decay and moisture performance. The results also highlight the importance of defined boundaries for density and annual ring width when comparing materials within and between experiments. It was concluded that with the factors obtained, existing, and future test data, where only one or two of the mentioned reference species were used, can be transferred to models and prediction tools that use another of the reference species

Til dokument

Sammendrag

Hovedmålet i dette prosjektet har vært å undersøke egenskapene til konstruksjonsvirke av furu fra Troms og Finnmark. Tidligere undersøkelser av furu fra dette området har blitt gjennomført på små, feilfrie prøver, og det er behov for å dokumentere egenskaper til trelast i bruksdimensjoner for å vurdere om kravene til konstruksjonsvirke oppfylles. Materialet ble samlet inn fra tre bestand i Pasvik, ett i Karasjok, to i Alta og fire i Bardufoss. Fra hvert bestand ble det ble tatt ut 12 trær, som ga totalt 650 planker. Trelasten ble visuelt styrkesortert etter NS-INSTA 142, og densitet, E-modul og bøyefasthet ble testet i henhold til NS-EN 408. Gjennomsnittlig bøyefasthet (40,5 N/mm2) var noe lavere enn det som er funnet for furu lenger sør i Norden. Det samme gjelder gjennomsnittlig E-modul (10,3 kN/mm2) og gjennomsnittlig densitet (448 kg/m3)...

Til dokument

Sammendrag

Durability-based designs with timber require reliable information about the wood properties and how they affect its performance under variable exposure conditions. This study aimed at utilizing a material resistance model (Part 2 of this publication) based on a dose–response approach for predicting the relative decay rates in above-ground situations. Laboratory and field test data were, for the first time, surveyed globally and used to determine material-specific resistance dose values, which were correlated to decay rates. In addition, laboratory indicators were used to adapt the material resistance model to in-ground exposure. The relationship between decay rates in- and above-ground, the predictive power of laboratory indicators to predict such decay rates, and a method for implementing both in a service life prediction tool, were established based on 195 hardwoods, 29 softwoods, 19 modified timbers, and 41 preservative-treated timbers.

Til dokument

Sammendrag

Service life planning with timber requires reliable models for quantifying the effects of exposure-related parameters and the material-inherent resistance of wood against biotic agents. The Meyer-Veltrup model was the first attempt to account for inherent protective properties and the wetting ability of wood to quantify resistance of wood in a quantitative manner. Based on test data on brown, white, and soft rot as well as moisture dynamics, the decay rates of different untreated wood species were predicted relative to the reference species of Norway spruce (Picea abies). The present study aimed to validate and optimize the resistance model for a wider range of wood species including very durable species, thermally and chemically modified wood, and preservative treated wood. The general model structure was shown to also be suitable for highly durable materials, but previously defined maximum thresholds had to be adjusted (i.e., maximum values of factors accounting for wetting ability and inherent protective properties) to 18 instead of 5 compared to Norway spruce. As expected, both the enlarged span in durability and the use of numerous and partly very divergent data sources (i.e., test methods, test locations, and types of data presentation) led to a decrease in the predictive power of the model compared to the original. In addition to the need to enlarge the database quantity and improve its quality, in particular for treated wood, it might be advantageous to use separate models for untreated and treated wood as long as the effect of additional impact variables (e.g., treatment quality) can be accounted for. Nevertheless, the adapted Meyer-Veltrup model will serve as an instrument to quantify material resistance for a wide range of wood-based materials as an input for comprehensive service life prediction software.

Til dokument

Sammendrag

The purpose of this research is to develop a method for estimating the spatially and temporally resolved moisture content of thermally modified Scots pine (Pinus sylvestris) using remote sensing. Hyperspectral time series imaging in the NIR wavelength region (953–2516 nm) was used to gather information about the absorbance of eight thermally modified pine samples each minute as they dried during a period of approximately 20 h. After preprocessing the collected spectral data and identifying an appropriate wavelength selection, partial least squares regression (PLS) was used to map the absorbance data of each pine sample to a distribution of moisture contents within the samples at different time steps during the drying process. To enable separate studying and comparison of the drying dynamics taking place within the early- and latewood regions of the pine samples, the collected images were spatially segmented to separate between early- and latewood pixels. The results of the study indicate that the 1966–2244 nm region of a NIR spectrum, when preprocessed with extended multiplicative scatter correction and first order derivation, can be used to model the average moisture content of thermally modified pine using PLS. The methods presented in this paper allows for estimation and visualization of the intrasample spatial distribution of moisture in thermally modified pine wood.