Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Background The Norwegian sheep farming system relies on forages, such as grass silage during winter and grazing cultivated leys and rangeland pastures during summer. Sheep and other ruminants produce enteric methane (CH4), a greenhouse gas of interest, and there is a need for reliable data on gas emissions from sheep capturing both the indoor feeding period and the grazing season. This study utilized an in vitro gas technique (with standard cow rumen fluid) and modeling approach to estimate CH4 production and fermentation patterns based on two different qualities of Italian ryegrass (Lolium multiflorum) pasture under sheep grazing. Results Herbage quality was examined for two 10-day periods, in July and August. Differences in chemical composition of the herbage during these periods had an impact on herbage digestibility and CH4 production. Total gas production and CH4 levels were significantly higher for lower quality herbage grazed in July than for higher quality herbage grazed in August (p < 0.005). Production of volatile fatty acids in the rumen remained constant between the two periods, but the higher acetate to propionate (A/P) ratio correlated with the higher CH4 production. Conclusion These findings suggest that pasture quality is an important factor to consider when implementing grazing strategies to reduce enteric CH4 production in sheep.

Til dokument

Sammendrag

CONTEXT European dairy cattle production systems (DPS) are facing multiple challenges that threaten their social, economic, and environmental sustainability. In this context, it is crucial to implement options to promote the reconnection between crop and livestock systems as a way to reduce emissions and enhance nutrient circularity. However, given the sector's diversity, the successful implementation of these options lacks an evaluation framework that jointly considers the climatic conditions, farm characteristics, manure management and mineral fertilisation practices of DPS across Europe. OBJECTIVE This study aims to develop a modelling and statistical framework to assess the effect of climatic conditions, farm characteristics, manure management and mineral fertilisation practices on the on-farm sources of greenhouse gas (GHG) emissions and nitrogen (N) losses from ten contrasting case studies for dairy production across Europe, identifying options for emissions mitigation and nutrient circularity. METHODS Using the SIMSDAIRY deterministic whole-farm modelling approach, we estimated the GHG emissions and N losses from the ten case studies. SIMSDAIRY captures the effect of different farm management choices and site-specific conditions on nutrient cycling and emissions from different components of a dairy farm. In addition, we applied the Factor Analysis for Mixed Data multivariate statistical approach to quantitative and qualitative variables and identified relationships among emissions, nutrient losses, and the particular characteristics of the case studies assessed. RESULTS AND CONCLUSIONS The results showed how intensive case study farms in temperate climates were associated with lower enteric emissions but higher emissions from manure management (e.g. housing). In contrast, semi-extensive case study farms in cooler climates exhibited higher N losses and GHG emissions, directly linked to increased mineral fertilisation, excreta during grazing, and slurry application using broadcast. Furthermore, the results indicated opportunities to improve nutrient circularity and crop-livestock integration by including high-quality forages instead of concentrates and substituting mineral fertilisers with organic fertilisers. SIGNIFICANCE The presented framework provides valuable insights for designing, implementing, and monitoring context-specific emission mitigation options and nutrient circularity practices. By combining whole-farm modelling approaches and multivariate statistical methods, we enhance the understanding of the interactions between sources of N losses and GHG emissions. We expect our findings to inform the adoption of emissions reduction and circularity practices by fostering the recoupling between crop and livestock systems.

Til dokument

Sammendrag

Understanding the environmental consequences associated with dairy cattle production systems is crucial for the implementation of targeted strategies for emission reduction. However, few studies have modelled the effect of tailored emission mitigation options across key European dairy production systems. Here, we assess the single and combined effect of six emission mitigation practises on selected case studies across Europe through the Sustainable and Integrated Management System for Dairy Production model. This semi-mechanistic model accounts for the interacting flows from a whole-farm perspective simulating the environmental losses in response to different management strategies and site-specific conditions. The results show how reducing the crude protein content of the purchased fraction of the diet was an adequate strategy to reduce the greenhouse gas and nitrogen emission intensity in all systems. Furthermore, implementing an anaerobic digestion plant reduced the greenhouse gas emissions in all tested case studies while increasing the nitrogen emissions intensity, particularly when slurry was applied using broadcast. Regarding the productivity increase, contrasting effects were observed amongst the case studies modelled. Moreover, shallow slurry injection effectively mitigated the intensity of nitrogen losses from the fields due to strong reductions in ammonia volatilisation. When substituting urea with ammonium nitrate as mineral fertiliser, site-specific conditions affected the mitigation potential observed, discouraging its application on sandy-loam soils. Rigid slurry covers effectively reduced the storage-related nitrogen emissions intensity while showing a minor effect on total greenhouse gas emission intensity. In addition, our results provide novel evidence regarding the advantages of cumulative implementation of adapted mitigation options to offset the negative trade-offs of single-option applications (i.e. slurry covers or anaerobic digestion and slurry injection). Through this study, we contribute to a better understanding of the effect of emission mitigation options across dairy production systems in Europe, thus facilitating the adoption of tailored and context-specific emission reduction strategies.

Til dokument

Sammendrag

Small ruminant (sheep and goat) production of meat and milk is undertaken in diverse topographical and climatic environments and the systems range from extensive to intensive. This could lead to different types of welfare compromise, which need to be managed. Implementing Precision Livestock Farming (PLF) and other new or innovative technologies could help to manage or monitor animal welfare. This paper explores such opportunities, seeking to identify promising aspects of PLF that may allow improved management of welfare for small ruminants using literature search (two reviews), workshops in nine countries (France, Greece, Ireland, Israel, Italy, Norway, Romania, Spain, and the United Kingdom) with 254 stakeholders, and panels with 52 experts. An investigation of the main welfare challenges that may affect sheep and goats across the different management systems in Europe was undertaken, followed by a prioritisation of animal welfare issues obtained in the nine countries. This suggested that disease and health issues, feed access and undernutrition/malnutrition, maternal behaviour/offspring losses, environmental stressors and issues with agonistic behavioural interactions were important welfare concerns. These welfare issues and their indicators (37 for sheep, 25 for goats) were categorised into four broad welfare indicator categories: weight loss or change in body state (BWC), behavioural change (BC), milk yield and quality (MY), and environmental indicators (Evt). In parallel, 24 potential PLF and innovative technologies (8 for BWC; 10 for BC; 4 for MY; 6 for Evt) that could be relevant to monitor these broad welfare indicator categories and provide novel approaches to manage and monitor welfare have been identified. Some technologies had the capacity to monitor more than one broad indicator. Out of the 24 technologies, only 12 were animal-based sensors, or that could monitor the animal individually. One alternative could be to incorporate a risk management approach to welfare, using aspects of environmental stress. This could provide an early warning system for the potential risks of animal welfare compromise and alert farmers to the need to implement mitigation actions.

Til dokument

Sammendrag

Biochar, which is the product of biomass pyrolysis, has been suggested as a feed supplement to improve performance in livestock systems and reduce greenhouse gas emissions. The aim of the current study was to investigate in vitro and in vivo potential of biochar to favourably modify rumen fermentation (e.g., an increase in total Short Chained Fatty Acid (SCFA) concentration and a change in SCFA profile), reduce methane emission and increase sheep growth performance. Four concentrates were produced with biochar inclusion of 0, 10, 23 and 46 g/kg DM. The experimental diets for the in vitro experiments consisted of straw and concentrate in a 60:40 ratio and included measurements of total gas and methane (CH4) production, pH, ammonia nitrogen, SCFA, and microbial assays (total bacteria and methanogenic archaea). Two in vivo experiments were performed where the animals received ad libitum forage with 0.4 kg concentrate daily. Experiment 1 investigated the daily DM intake of sheep while experiment 2 investigated daily growth rate and CH4 emission of lambs. The inclusion of biochar had no impact on in vitro total gas production (ml/200 mg DM substrate) (P = 0.81) and CH4 production (ml/200 mg DM substrate) (P = 0.93). In vitro total SCFA concentration increased (P < 0.05) while acetate to propionate ratio (A:P) tended to decrease (P = 0.05) with both doses of biochar. Total bacteria decreased with the highest biochar inclusion in vitro (P < 0.05). Sheep’s DM intake (kg/d) increased when low and medium levels but not when a higher level of biochar was added to the diet (P < 0.001). The inclusion of biochar did not significantly impact the lamb’s daily growth rate (g/d) (P = 0.61) or enteric CH4 emissions (g/kg DM) (P = 0.43). We conclude that biochar supplementation had no favourable impacts on in vitro and in vivo CH4 production or on lamb’s growth rate. Further research with well-characterised biochar is needed to gain a better understanding of the potential of biochar as a feed additive for ruminant livestock.

2023