Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

Background Progress in the field of evolutionary forest ecology has been hampered by the huge challenge of phenotyping trees across their ranges in their natural environments, and the limitation in high-resolution environmental information. Findings The GenTree Platform contains phenotypic and environmental data from 4,959 trees from 12 ecologically and economically important European forest tree species: Abies alba Mill. (silver fir), Betula pendula Roth. (silver birch), Fagus sylvatica L. (European beech), Picea abies (L.) H. Karst (Norway spruce), Pinus cembra L. (Swiss stone pine), Pinus halepensis Mill. (Aleppo pine), Pinus nigra Arnold (European black pine), Pinus pinaster Aiton (maritime pine), Pinus sylvestris L. (Scots pine), Populus nigra L. (European black poplar), Taxus baccata L. (English yew), and Quercus petraea (Matt.) Liebl. (sessile oak). Phenotypic (height, diameter at breast height, crown size, bark thickness, biomass, straightness, forking, branch angle, fructification), regeneration, environmental in situ measurements (soil depth, vegetation cover, competition indices), and environmental modeling data extracted by using bilinear interpolation accounting for surrounding conditions of each tree (precipitation, temperature, insolation, drought indices) were obtained from trees in 194 sites covering the species’ geographic ranges and reflecting local environmental gradients. Conclusion The GenTree Platform is a new resource for investigating ecological and evolutionary processes in forest trees. The coherent phenotyping and environmental characterization across 12 species in their European ranges allow for a wide range of analyses from forest ecologists, conservationists, and macro-ecologists. Also, the data here presented can be linked to the GenTree Dendroecological collection, the GenTree Leaf Trait collection, and the GenTree Genomic collection presented elsewhere, which together build the largest evolutionary forest ecology data collection available.

Sammendrag

I rapporten sammenlignes resultatene av to ulike MiS-registreringer gjennomført i henholdsvis 2009 og 2020 i Follsjåområdet i Notodden kommune. Resultatene viste betydelige forskjeller mellom takstene både når det gjaldt totalt areal av registrerte livsmiljøer, fordeling av areal på ulike typer livsmiljøer, og evnen til å fange opp viktige livsmiljøer for rødlistearter. Vi diskuterer årsaker til disse forskjellene, og foreslår også noen muligheter for forbedringer av registreringene.

Sammendrag

Genetic variation and phenotypic stability in Norway spruce were studied based on provenances, families, and clones planted in trials at 12 sites in four Nordic countries. The families were generated in a factorial cross between 10 parents of Norwegian origin and 10 parents of Eastern European origin, and the clones were propagated from seedlings within 20 of the same families. Traits analyzed were survival, proportion of trees with stem defects, and tree heights. Stability was analyzed by regression analyses with the genetic entries’ annual shoot increment as the dependent variable and the total site mean as an environmental index. Information about growth and phenology traits were available from short-term tests. For tree heights, significant variance components were present both among female and male parents, but not for their interactions, indicating that non-additive genetic effects are small. Genotype × environment interactions were significant at all three genetic levels, but their variance components had considerably lower values than the variance components estimated for the effects of families and clones. For the set of families of Norwegian origin, strong relationships were observed between the timing of annual shot elongation, mortality, and height growth. Large variation was found at all three genetic levels for phenotypic stability measured by regression coefficients. A positive relationship was present between the regression coefficient and the timing of annual shoot growth for families, indicating that later flushing families responded more to a high site index. The regression coefficient can be a useful supplement to the breeding value when selecting for superior and stable genotypes.

Til dokument

Sammendrag

Crop residue incorporation is a common practice to increase or restore organic matter stocks in agricultural soils. However, this practice often increases emissions of the powerful greenhouse gas nitrous oxide (N2O). Previous meta-analyses have linked various biochemical properties of crop residues to N2O emissions, but the relationships between these properties have been overlooked, hampering our ability to predict N2O emissions from specific residues. Here we combine comprehensive databases for N2O emissions from crop residues and crop residue biochemical characteristics with a random-meta-forest approach, to develop a predictive framework of crop residue effects on N2O emissions. On average, crop residue incorporation increased soil N2O emissions by 43% compared to residue removal, however crop residues led to both increases and reductions in N2O emissions. Crop residue effects on N2O emissions were best predicted by easily degradable fractions (i.e. water soluble carbon, soluble Van Soest fraction (NDS)), structural fractions and N returned with crop residues. The relationship between these biochemical properties and N2O emissions differed widely in terms of form and direction. However, due to the strong correlations among these properties, we were able to develop a simplified classification for crop residues based on the stage of physiological maturity of the plant at which the residue was generated. This maturity criteria provided the most robust and yet simple approach to categorize crop residues according to their potential to regulate N2O emissions. Immature residues (high water soluble carbon, soluble NDS and total N concentration, low relative cellulose, hemicellulose, lignin fractions, and low C:N ratio) strongly stimulated N2O emissions, whereas mature residues with opposite characteristics had marginal effects on N2O. The most important crop types belonging to the immature residue group – cover crops, grasslands and vegetables – are important for the delivery of multiple ecosystem services. Thus, these residues should be managed properly to avoid their potentially high N2O emissions.