Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2021
Forfattere
Knut ØistadSammendrag
Det er ikke registrert sammendrag
Sammendrag
Water consumption along value chains of goods and services has increased globally and led to increased attention on water footprinting. Most global water consumption is accounted for by evaporation (E), which is connected via bridges of atmospheric moisture transport to other regions on Earth. However, the resultant source–receptor relationships between different drainage basins have not yet been considered in water footprinting. Based on a previously developed data set on the fate of land evaporation, we aim to close this gap by using comprehensive information on evaporation recycling in water footprinting for the first time. By considering both basin internal evaporation recycling (BIER; >5% in 2% of the world’s basins) and basin external evaporation recycling (BEER; >50% in 37% of the world’s basins), we were able to use three types of water inventories (basin internal, basin external, and transboundary inventories), which imply different evaluation perspectives in water footprinting. Drawing on recently developed impact assessment methods, we produced characterization models for assessing the impacts of blue and green water evaporation on blue water availability for all evaluation perspectives. The results show that the negative effects of evaporation in the originating basins are counteracted (and partly overcompensated) by the positive effects of reprecipitation in receiving basins. By aggregating them, combined net impacts can be determined. While we argue that these offset results should not be used as a standalone evaluation, the water footprint community should consider atmospheric moisture recycling in future standards and guidelines.
Forfattere
Helene Birkelund Erlandsen Stein Beldring Stephanie Eisner Hege Hisdal Shaochun Huang Lena Merete TallaksenSammendrag
Robust projections of changes in the hydrological cycle in a non-stationary climate rely on trustworthy estimates of the water balance elements. Additional drivers than precipitation and temperature, namely wind, radiation, and humidity are known to have a significant influence on processes such as evaporation, snow accumulation, and snow-melt. A gridded version of the rainfall-runoff HBV model is run at a 1 × 1 km scale for mainland Norway for the period 1980–2014, with the following alterations: (i) the implementation of a physically based evaporation scheme; (ii) a net radiation-restricted degree-day factor for snow-melt, and (iii) a diagnostic precipitation phase threshold based on temperature and humidity. The combination of improved forcing data and model alterations allowed for a regional calibration with fewer calibrated parameters. Concurrently, modeled discharge showed equally good or better validation results than previous gridded model versions constructed for the same domain; and discharge trend patterns, snow water equivalent, and potential evaporation compared fairly to observations. Compared with previous studies, lower precipitation and evaporation values for mainland Norway were found. The results suggest that a more robust and more physically based model for climate change studies has been obtained, although additional studies will be needed to further constrain evaporation estimates.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Hannes Müller Schmied Denise Caceres Stephanie Eisner Martina Flörke Claudia Herbert Christoph Niemann Thedini Asali Peiris Eklavyya Popat Felix Theodor Portmann Robert Reinecke Maike Schumacher Somayeh Shadkam Camelia-Eliza Telteu Tim Trautmann Petra DöllSammendrag
WaterGAP is a global hydrological model that quantifies human use of groundwater and surface water as well as water flows and water storage and thus water resources on all land areas of the Earth. Since 1996, it has served to assess water resources and water stress both historically and in the future, in particular under climate change. It has improved our understanding of continental water storage variations, with a focus on overexploitation and depletion of water resources. In this paper, we describe the most recent model version WaterGAP 2.2d, including the water use models, the linking model that computes net abstractions from groundwater and surface water and the WaterGAP Global Hydrology Model (WGHM). Standard model output variables that are freely available at a data repository are explained. In addition, the most requested model outputs, total water storage anomalies, streamflow and water use, are evaluated against observation data. Finally, we show examples of assessments of the global freshwater system that can be achieved with WaterGAP 2.2d model output.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Hui Tang Kjetil Schanke Aas Eirik Aasmo Finne Inge Althuizen Rosie A. Fisher Hans Tømmervik Ane Vollsnes Anders Bryn Sonya Rita Geange Sunniva Indrehus Vigdis Vandvik Jarle Werner Bjerke Terje Koren Berntsen Frode StordalSammendrag
Det er ikke registrert sammendrag
Forfattere
Jogeir N. StoklandSammendrag
Det er ikke registrert sammendrag
Forfattere
Jogeir N. StoklandSammendrag
Det er ikke registrert sammendrag
Forfattere
Jogeir N. StoklandSammendrag
This study documents volume increment and natural mortality in 1379 old boreal forests plots during four consecutive inventory cycles in the Norwegian national forest inventory. The stands age up to 100 years beyond recommended rotation length (close to economical optimal rotation length) and comprise a wide range of site productivity classes in both pine- and spruce-dominated forests. The annual gross volume increment was stable and nearly constant up to 50–100 years beyond economically optimal rotation length. In parallel, there was very low natural mortality (0.22–0.66% of standing volume) with minimal risk of stand collapse. Stands with satisfactory stocking had volume increment equal to or higher than the reference volume increment in managed stands harvested at recommended rotation length, while poorly stocked stands had inferior volume increment. From a climate change mitigation perspective, it seems to be a good strategy to extend the rotation length beyond what is currently recommended, provided that the stands have satisfactory stocking.